精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=2cosxsin(x-$\frac{π}{6}$)+$\frac{1}{2}$.
(1)求函数f(x)的对称轴方程;
(2)若方程sin2x+2|f(x+$\frac{π}{12}$)|-m+1=0在x∈[-$\frac{π}{3}$,$\frac{π}{2}$]上有三个实数解,求实数m的取值范围.

分析 (1)利用差角的正弦公式、二倍角公式、辅助角公式,化简函数,即可求函数f(x)的对称轴方程;
(2)方程sin2x+2|f(x+$\frac{π}{12}$)|-m+1=0可化为方程sin2x+2|sin2x|=m-1.令g(x)=$\left\{\begin{array}{l}{3sin2x,x∈[0,\frac{π}{2}]}\\{-sin2x,x∈[-\frac{π}{3},0)}\end{array}\right.$,根据方程有三个实数解,则m-1=1或0<m-1<$\frac{\sqrt{3}}{2}$,即可求实数m的取值范围.

解答 解:(1)f(x)=2cosxsin(x-$\frac{π}{6}$)+$\frac{1}{2}$=$\sqrt{3}$sinxcosx-$co{s}^{2}x+\frac{1}{2}$=$\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x$=sin(2x-$\frac{π}{6}$),
∴函数f(x)的对称轴方程x=$\frac{kπ}{2}+\frac{π}{3}$,k∈Z;.…(7分)
(2)方程sin2x+2|f(x+$\frac{π}{12}$)|-m+1=0可化为方程sin2x+2|sin2x|=m-1.
令g(x)=$\left\{\begin{array}{l}{3sin2x,x∈[0,\frac{π}{2}]}\\{-sin2x,x∈[-\frac{π}{3},0)}\end{array}\right.$…(10分) 
若方程有三个实数解,则m-1=1或0<m-1<$\frac{\sqrt{3}}{2}$
∴m=2或1<m<1+$\frac{\sqrt{3}}{2}$…(15分)

点评 本题考查三角函数的化简,考查三角函数的图象与性质,考查学生转化问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ax+1-2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M.到准线l的距离为d,则d+|MA|的最小值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=2sin(180°-x)+cos(-x)-sin(450°-x)+cos(90°+x).
(1)若f(α)=$\frac{2}{3}$•α∈(0°,180°),求tanα;
(2)若f(α)=2sinα-cosα+$\frac{3}{4}$,求sinα•cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知cos(x-$\frac{π}{4}$)=-$\frac{1}{3}$($\frac{5π}{4}$<x<$\frac{7π}{4}$),则sin2x-cos2x=(  )
A.$\frac{4\sqrt{2}-7}{9}$B.$\frac{-4\sqrt{2}-7}{9}$C.$\frac{4-7\sqrt{2}}{9}$D.$\frac{-4-7\sqrt{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=sin(ωx)(ω为正整数)在区间(-$\frac{π}{6}$,$\frac{π}{12}$)上不单调,则ω的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A,B,当$∠AOB=\frac{π}{2}$时,求k的值;
(2)若$k=\frac{1}{2},P$是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点?若过定点则求出该定点,若不存在则说明理由;
(3)若EF、GH为圆O:x2+y2=2的两条相互垂直的弦,垂足为$M({1,\frac{{\sqrt{2}}}{2}})$,求四边形EGFH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知角α的终边过点P(-8m,-6sin30°),且cosα=-$\frac{4}{5}$,则m的值为$\frac{1}{2}$,sinα=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a=log36,b=1+3${\;}^{-lo{g}_{3}e}$,c=($\frac{2}{3}$)-1则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={0,1,2},B={2,3},则A∪B=(  )
A.{0,1,2,3}B.{0,1,3}C.{0,1}D.{2}

查看答案和解析>>

同步练习册答案