【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站,且他们各自在每个站下车的可能性是相同的.
(1)若甲、乙两人共付费元,则甲、乙下车方案共有多少种?
(2)若甲、乙两人共付费元,求甲比乙先到达目的地的概率.
【答案】(1)9;(2)
【解析】
(1)由题意知甲、乙乘坐地铁均不超过站,前站设为, , ,(2),甲、乙两人共有种下车方案;(2)设站分别为, , , , , , , , ,因为甲、乙两人共付费元,共有甲付元,乙付元;甲付元,乙付元;甲付元,乙付元三类情况. 由(1)可知每类情况中有种方案,所以甲、乙两人共付费元共有种方案. 而甲比乙先到达目的地的方案有共种,从而得到甲比乙先到达目的地的概率.
(1)由题意知甲、乙乘坐地铁均不超过站,前站设为, , ,
甲、乙两人共有, , , , , , , , 种下车方案.
(2)设站分别为, , , , , , , , ,因为甲、乙两人共付费元,共有甲付元,乙付元;甲付元,乙付元;甲付元,乙付元三类情况.
由(1)可知每类情况中有种方案,所以甲、乙两人共付费元共有种方案.
而甲比乙先到达目的地的方案有, , , , , , , , , , , ,共种,
故所求概率为.
所以甲比乙先到达目的地的概率为.
科目:高中数学 来源: 题型:
【题目】针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的.若有的把握认为是否追星和性别有关,则男生至少有( )
参考数据及公式如下:
A. 12B. 11C. 10D. 18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,的四个顶点围成的四边形的面积为.
(1)求的方程;
(2)过的左焦点作直线与交于、两点,线段的中点为,直线(为坐标原点)与直线相交于点,是否存在直线使得为等腰直角三角形,若存在,求出的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面是平行四边形,在平面上的射影为,且在上,且, ,是的中点,四面体的体积为.
(Ⅰ)求异面直线与所成的角余弦值;
(Ⅱ)求点到平面的距离;
(Ⅲ)若点是棱上一点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系平面上的一列点,,…,,记为,若由构成的数列满足,,其中为与轴正方向相同的单位向量,则称为点列.
(1)判断,,,…,,是否为点列,并说明理由;
(2)若为点列.且点在点的右上方,(即)任取其中连续三点,,判断的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;
(3)若为点列,正整数,满足.求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国明代珠算家程大位的名著《直指算法统宗》中有如下问题:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”其意思为:“今有白米一百八十石,甲、乙、丙三人来分,他们分得的白米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少白米?”请问:乙应该分得( )白米
A. 96石B. 78石C. 60石D. 42石
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( )
A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐
B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐
C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐
D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入,,则输出的等于( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com