A. | [3,+∞) | B. | (3,+∞) | C. | $[2\sqrt{2},+∞)$ | D. | $(2\sqrt{2},+∞)$ |
分析 先画出函数f(x)=|lnx|的图象,利用对数的性质即可得出ab的关系式,再利用函数的单调性的性质即可求出范围.
解答 解:∵f(x)=|lnx|=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x≥1}\end{array}\right.$,画出图象:
∵0<a<b且f(a)=f(b),∴0<a<1<b,-lna=lnb,
∴ln(ab)=0,∴ab=1.
∴a+2b=a+$\frac{2}{a}$的导数为1-$\frac{2}{{a}^{2}}$,
可得在0<a<1时递减,
即有a+2b>3,
∴a+2b的取值范围是(3,+∞).
故选B.
点评 熟练掌握数形结合的思想方法、对数的性质和函数的单调性的性质是解题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com