精英家教网 > 高中数学 > 题目详情

【题目】设全集U=R,集合A={x|7﹣6x≤0},集合B={x|y=lg(x+2)},则(UA)∩B等于(
A.(﹣2,
B.( ,+∞)
C.[﹣2,
D.(﹣2,﹣

【答案】A
【解析】解:全集U=R,集合A={x|7﹣6x≤0}={x|x≥ }=[ ,+∞),
集合B={x|y=lg(x+2)}={x|x+2>0}={x|x>﹣2}=(﹣2,+∞),
UA=(﹣∞, ),
∴(UA)∩B=(﹣2, ).
故选:A.
【考点精析】解答此题的关键在于理解交、并、补集的混合运算的相关知识,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知指数函数yg(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.

(1)确定yf(x)yg(x)的解析式;

(2)判断函数f(x)的单调性,并用定义证明;

(3)若对于任意x∈[-5,-1],都有f(1-x)+f(1-2x)>0成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:

分组

等待时间(分钟)

人数

第一组

[0,5)

10

第二组

[5,10)

a

第三组

[10,15)

30

第四组

[15,20)

10


(1)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(2)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个质数构成公差为的等差数列,且.求证

(1)是质数时,

(2)时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.

(1)求实数m的取值范围;

(2)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点分别为 交于O,A两点(O为坐标原点),且

求抛物线的方程;

过点O的直线交的下半部分于点M,交的左半部分于点N,点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为正四棱锥侧棱上异于 的一点,给出下列结论:

①侧面可以是正三角形.

②侧面可以是直角三角形.

③侧面上存在直线与平行.

④侧面上存在直线与垂直.

其中,所有正确结论的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且

(1)当P在圆上运动时,求点M的轨迹C的方程;

(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.

查看答案和解析>>

同步练习册答案