精英家教网 > 高中数学 > 题目详情

       (理)已知数列,且是函数,()的一个极值点.数列).

   (1)求数列的通项公式;

   (2)记,当时,数列的前项和为,求使的最小值;

   (3)若,证明:)。

 

解:(理)(1)

       所以,整理得

       当时,是以为首项,为公比的等比数列,

       所以

       方法一:由上式得

       所以,所以

       当时上式仍然成立,故……………4分

       方法二:由上式得:,所以是常数列

      

       又,当时上式仍然成立,故

   (2)当时,

      

       由,得,                       

       当时,,当时,

       因此的最小值为1006.……………8分

   (3) ,所以证明

       即证明

       因为

       所以,从而原命题得证………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知f(x)是定义在R上的不恒为零的函数,且对于任意非零的实数a,b∈R,满足f(a•b)=
f(b)
a
+
f(a)
b
f(2)=
1
2
an=
f(2n)
n
(n∈N*),bn=2nf(2n)(n∈N*)
,考查下列结论:
(1)f(1)=f(-1);     (2)f(x)为偶函数;
(3)数列{an}为等比数列; (4)数列{bn}为等差数列.
其中正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;(2)设数列{
1
a
2
n
}的前n项和为Tn,证明Tn
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•嘉定区一模)(理)已知函数f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)图象上两点.
(1)若x1+x2=1,求证:y1+y2为定值;
(2)设Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn关于n的解析式;
(3)对(2)中的Tn,设数列{an}满足a1=2,当n≥2时,an=4Tn+2,问是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
对一切n∈N*都成立?若存在,求出角α的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=loga
x-1
x+1
(其中a>0且a≠1),g(x)是f(x)的反函数.
(1)已知关于x的方程loga
m
(x+1)(7-x)
=f(x)在区间[2,6]上有实数解,求实数m的取值范围;
(2)当o<a<1时,讨论函数f(x)的奇偶性和增减性;
(3)设a=
1
1+p
,其中p≥1.记bn=g(n),数列{bn}的前n项的和为Tn(n∈N*),求证:n<Tn<n+4.

查看答案和解析>>

同步练习册答案