精英家教网 > 高中数学 > 题目详情

【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:

分组

频数

频率

0.050

0.200

12

0.300

0.275

0.050

合计

1)根据上面图表,①②④处的数值分别为__________________

2)在所给的坐标系中画出的频率分布直方图;

3)根据题中信息估计总体平均数,并估计总体落在中的概率.

【答案】1)①1 0.025 1.000;(2)见解析;(3.

【解析】

1)先分析频率分布表中的数据,再填表即可;

2)由频率分布表作频率分布直方图即可;

3)结合频率分布直方图求平均数及概率即可.

解:(1)由频率分布表可得所有组概率之和为1,则1.000

1.000-0.050-0.200-0.300-0.275-0.500=0.025

的频率为0.300,频数为12的频率为0.025,则频数为1

即①填1

①②④处的数值分别为10.0251

2)由频率分布表可得频率分布直方图如图.

3)利用组中值算得平均数为:

故总体落在上的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,梯形中,,将△沿对角线折起,设折起后点的位置为,使二面角为直二面角,给出下面四个命题:① ;②三棱锥的体积为;③平面;④平面平面;其中正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,且)求数列的通项公式;()记的前项和为,若成等比数列,求正整数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)若,求的单调区间;

2)若,求的极大值;

3)若,指出的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为yx2,又直线l过椭圆Cab0)的右焦点,且椭圆的离心率为

)求椭圆C的方程;

)过点D01)的直线与椭圆C交于点AB,求△AOB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:

单价(千元)

3

4

5

6

7

8

销量(百件)

70

65

62

59

56

已知.

(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”.现从个销售数据中任取个,求“好数据”至少个的概率.

(参考公式:线性回归方程中的估计值分别为).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2所.

(1)求甲、乙、丙三名同学都选高校的概率;

(2)若甲必选,记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的环境保护意识,某市面向全市学校征召100名教师做义务宣传志愿者,成立环境保护宣传组,现把该组的成员按年龄分成5组,如下表所示:

组别

年龄

人数

1

5

2

35

3

20

4

30

5

10

(Ⅰ)若从第3,4,5组中用分层抽样的方法选出6名志愿者参加某社区宣传活动,应从第3,4,5组各选出多少名志愿者?

(Ⅱ)在Ⅰ的条件下,宣传组决定在这6名志愿者中随机选2名志愿者介绍宣传经验.

(ⅰ)列出所有可能结果;

(ⅱ)求第4组至少有1名志愿者被选中的概率。

查看答案和解析>>

同步练习册答案