精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=n2-9n(n∈N*)
(1)这个数列是等差数列吗?若是请证明并求它的通项公式,若不是,请说明理由;
(2)求使得Sn取最小的序号n的值.
分析:(1)根据数列的前n项和,再写一式,两式相减,求得数列的通项,从而可得结论;
(2)利用配方法,即可求得结论.
解答:解:(1)∵Sn=n2-9n,∴a1=S1=-8
n≥2时,an=Sn-Sn-1=n2-9n-(n-1)2+9(n-1)=2n-10
n=1,a1=8适合上式
∴an=2n-10,
∴n≥2时,an-an-1=2
∴数列{an}是等差数列;
(2)Sn=n2-9n=(n-
9
2
)2-
81
4

∵n∈N*
∴n=4或5时,Smin=-20.
点评:本题考查数列的前n项和,考查数列的通项,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案