精英家教网 > 高中数学 > 题目详情
空间四边形ABCD角线与四边都相等,E为AD的中点,则AB与CE所成的角是(  )
分析:先取BD中点F,连接EF,CF,得到∠FEC(或其补角)即为AB与CE所成的角;然后通过计算三角形CEF的各边长,借助于余弦定理即可求出结论.
解答:解:取BD中点F,连接EF,CF,
则EF∥AB,
∠FEC(或其补角)即为AB与CE所成的角.
 因为 空间四边形ABCD各边及对角线AC BD都等,设他们的长度都为2a;
所以:CE=CF=
3
2
•2a=
3
a,EF=a;
根据余弦定理可得:cos∠CEF=
EF2+CE2-CF 2
2EF•EC
=
a2+(
3
a)
2
-(
3
a)
2
2•
3
a• a
=
3
6

所以:∠FEC=arccos
3
6

即AB与CE所成的角是arccos
3
6

故选:B.
点评:本题考查求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在空间四边形ABCD中,AB=CD=3,点E、F分别是边BC和AD上的点,并且BE:EC=AF:FD=1:2,EF=
7
,求异面直线AB和CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,若AC=BD=a,且AC与BD所成的角为45°,则四边形EFGH的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

空间四边形ABCD角线与四边都相等,E为AD的中点,则AB与CE所成的角是


  1. A.
    arccos数学公式
  2. B.
    arccos数学公式
  3. C.
    arccos数学公式
  4. D.
    arccos数学公式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD角线与四边都相等,E为AD的中点,则AB与CE所成的角是(  )
A.arccos
2
6
B.arccos
3
6
C.arccos
2
3
D.arccos
3
3

查看答案和解析>>

同步练习册答案