A. | 4π | B. | $\frac{9π}{2}$ | C. | $\frac{125π}{6}$ | D. | $\frac{32π}{3}$ |
分析 先保证截面圆与△ABC内切,记圆O的半径为r,由等面积法得(AC+AB+BC)r=6×8,解得r=2.由于三棱柱高为5,此时可以保证球在三棱柱内部,球的最大半径为2,由此能求出结果.
解答 解:如图,由题知,球的体积要尽可能大时,球需与三棱柱内切.
先保证截面圆与△ABC内切,记圆O的半径为r,
则由等面积法得${S_{△ABC}}=\frac{1}{2}AC\;•\;r+\frac{1}{2}AB\;•\;r+\frac{1}{2}BC\;•\;r=\frac{1}{2}×6×8$,
所以(AC+AB+BC)r=6×8,又AB=6,BC=8,
所以AC=10,所以r=2.由于三棱柱高为5,此时可以保证球在三棱柱内部,
若r增大,则无法保证球在三棱柱内,
故球的最大半径为2,所以$V=\frac{32π}{3}$.
故选:D.
点评 本题考查球的最大体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{6}}}{2}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 如果平面α⊥平面β,任取直线m?α,那么必有m⊥β | |
B. | 如果直线m∥平面α,直线n?α内,那么m∥n | |
C. | 如果直线m∥平面α,直线n∥平面α,那么m∥n | |
D. | 如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥α |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com