Éè{an}ÊǵȲîÊýÁУ¬ÆäÇ°nÏîµÄºÍΪSn£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{
Sn
n
}
ΪµÈ²îÊýÁУ»
£¨2£©Éè{an}¸÷ÏîΪÕýÊý£¬a1=
1
15
£¬a1¡Ùa2£¬Èô´æÔÚ»¥ÒìÕýÕûÊým£¬n£¬pÂú×㣺¢Ùm+p=2n£»¢Ú
Sm
+
Sp
=2
Sn
£®Ç󼯺Ï{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}µÄÔªËظöÊý£»
£¨3£©Éèbn=aan£¨aΪ³£Êý£¬a£¾0£¬a¡Ù1£¬a1¡Ùa2£©£¬ÊýÁÐ{bn}Ç°nÏîºÍΪTn£®¶ÔÓÚÕýÕûÊýc£¬d£¬e£¬f£¬Èôc£¼d£¼e£¼f£¬ÇÒc+f=d+e£¬ÊԱȽϣ¨Tc£©-1+£¨Tf£©-1Ó루Td£©-1+£¨Te£©-1µÄ´óС£®
·ÖÎö£º£¨1£©{an}ÊǵȲîÊýÁУ¬¿ÉÒÔÓÃÊ×Ïîa1ºÍ¹«²îdÀ´±íʾǰnÏîµÄºÍΪSnÔÙ½«Æä´úÈë
Sn
n
µÄ±í´ïʽ£¬ÔÙÓÃÏàÁÚÁ½Ïî×÷²îµÄ·½·¨£¬µÃµ½ÏàÁÚÁ½ÏîµÄ²îΪ³£Êý£¬´Ó¶øÖ¤³öÊýÁÐ{
Sn
n
}
ΪµÈ²îÊýÁУ»
£¨2£©¸ù¾Ý£¨1£©ÖеĽáÂÛ£¬ÏÈÉè
Sn
n
=¦Án+¦Â
£¨ÆäÖЦÁ¡¢¦ÂΪ³£Êý£©£¬´Ó¶øSn=¦Án2+¦Ân£®½«´Ëʽ´úÈëÒÑ֪ʽÖеڶþ¸öµÈʽ£¬Í¨¹ýÕûÀí±äÐεæÂ=0£¬ÔÙ½áºÏ½áºÏÊ×Ïîa1=
1
15
£¬µÃ¦Á=
1
15
£¬¹ÊSn=
1
15
n2£®È»ºóÀûÓô˱í´ïʽ½«¼¯ºÏ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}»¯¼òΪ{£¨x£¬y£©|xy=15£¬x¡ÊN*£¬y¡ÊN*}£¬¸ù¾Ý15ÓÐ4¸öÕýÔ¼Êý£¬µÃµ½Âú×ãÌõ¼þµÄÊý¶Ô£¨x£¬y£©µÄ¸öÊýΪ4¸ö£»
£¨3£©¸ù¾ÝµÈ±ÈÊýÁеĶ¨ÒåÖ¤³öÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬È»ºóÖ¤Ã÷µÈ±ÈÊýÁеÄÒ»¸ö½áÂÛ£ºµ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®ÀûÓÃÕâ¸ö½áÂÛ£¬½áºÏc+f=d+e¿ÉÒÔÖ¤µÃ£¨Tc£©-1-£¨Td£©-1±È£¨Te£©-1-£¨Tf£©-1´ó£¬×îºóͨ¹ýÒÆÏîÖ¤µÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
½â´ð£º½â£º£¨1£©{an}ΪµÈ²îÊýÁУ¬ÉèÆ乫²îΪd£¬Ôò
S n
n
=
na  1+  
n(n-1)d
2
n
=a 1+
n-1
2
d
£¬ÓÚÊÇ
Sn+1
n+1
-
S n
n
=a 1+
n
2
d-(aq+
n-1
2
d)=
d
2
£¨³£Êý£©£¬
¹ÊÊýÁÐ{
Sn
n
}
ÊÇa1ΪÊ×Ï¹«²îΪ
d
2
µÄµÈ²îÊýÁУ®
£¨2£©ÒòΪ{an}ΪµÈ²îÊýÁУ¬Ëù{
Sn
n
}
ÊǵȲîÊýÁУ¬
ÓÚÊÇ¿ÉÉè
Sn
n
=¦Án+¦Â
£¨ÆäÖЦÁ¡¢¦ÂΪ³£Êý£©£¬´Ó¶øSn=¦Án2+¦Ân£®
ÒòΪm+p=2n£¬ËùÒÔÓÉ
Sm
+
Sp
=2
Sn
Á½±ßƽ·½µÃ
Sm+Sp+2
Sm
Sp
=4Sn£¬¼´µÃa(m 2+p 2)+2
Sm
Sp
=4an 2+2¦Ân=a(m+p) 2+2¦Ân
£¬
ÓÚÊÇ
Sm Sn
=¦Ámp+¦Ân
£¬Á½±ßƽ·½²¢ÕûÀíµÃ¦Â2£¨m-p£©2=0£®
ÒòΪm¡Ùp£¬ËùÒÔ¦Â=0£¬´Ó¶øSn=¦Án2£¬¶øa1=
1
15
£¬ËùÒÔ¦Á=
1
15
£®
¹ÊSn=
1
15
n2£®ËùÒÔ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}={£¨x£¬y£©|(
1
15
xy)  2
=1£¬x¡ÊN*£¬y¡ÊN*}={£¨x£¬y£©|xy=15£¬x¡ÊN*£¬y¡ÊN*}£®
ÒòΪ15ÓÐ4¸öÕýÔ¼Êý£¬ËùÒÔÊý¶Ô£¨x£¬y£©µÄ¸öÊýΪ4¸ö£®
¼´¼¯ºÏ{£¨x£¬y£©|Sx•Sy=1£¬x¡ÊN*£¬y¡ÊN*}ÖеÄÔªËظöÊýΪ4£®
£¨3£©ÒòΪ
b n+1
b n
=
aan+1
aan
=a d
£¨³£Êý£©£¬
ËùÒÔÊýÁÐ{bn}ÊÇÕýÏîµÈ±ÈÊýÁУ®
ÒòΪa1¡Ùa2£¬ËùÒԵȱÈÊýÁÐ{bn}µÄ¹«±Èq¡Ù1£®
£¨Tc£©-1+£¨Tf£©-1Ó루Td£©-1+£¨Te£©-1µÄ´óС¹Øϵ¼´£¨Tc£©-1-£¨Td£©-1Ó루Te£©-1-£¨Tf£©-1µÄ´óС¹Øϵ
×¢Òâµ½µ±n£¾mʱ£¬Tn£¾Tn-Tn-m=qn-mTm£®
ËùÒÔTd£¾qd-cTcÇÒTf£¾qf-eTe?£¨Tc£©-1-£¨Td£©-1=
T d-T  c
T dTc
£¾
T f-T e
T eTf
=£¨Te£©-1-£¨Tf£©-1
ÒÆÏî¿ÉµÃ£¨Tc£©-1+£¨Tf£©-1£¾£¨Td£©-1+£¨Te£©-1£®
µãÆÀ£º±¾ÌâÌâÊǺ¯ÊýÓëÊýÁС¢²»µÈʽµÄ×ۺϣ¬ÊÇÒ»µÀÄÑÌ⣮×ÅÖØ¿¼²éÊýÁеĺ¯ÊýÐÔÐÔÖÊ¡¢µÈ²îÊýÁеĶ¨ÒåºÍÐÔÖʵÈ֪ʶ£¬¿¼²éÁËת»¯¹¹Ôì·¨¡¢·ÅËõ·¨¡¢ÊýÐνáºÏµÈ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè{an}ÊǵȲîÊýÁУ¬bn=£¨
1
2
£©an£®ÒÑÖªb1+b2+b3=
21
8
£¬b1b2b3=
1
8
£®ÇóµÈ²îÊýÁеÄͨÏîan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè{an}ÊǵȲîÊýÁУ¬a1+a3+a5=9£¬a6=9£®ÔòÕâ¸öÊýÁеÄÇ°6ÏîºÍµÈÓÚ£¨¡¡¡¡£©
A¡¢12B¡¢24C¡¢36D¡¢48

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

1¡¢Éè{an}ÊǵȲîÊýÁУ¬ÇÒa1+a5=6£¬Ôòa3µÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•»ÝÖÝÄ£Ä⣩Éè{an}ÊǵȲîÊýÁУ¬ÇÒa2+a3+a4=15£¬ÔòÕâ¸öÊýÁеÄÇ°5ÏîºÍS5=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè{an}ÊǵȲîÊýÁУ¬a1£¾0£¬a2007+a2008£¾0£¬a2007•a2008£¼0£¬ÔòʹSn£¾0³ÉÁ¢µÄ×î´ó×ÔÈ»ÊýnÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸