【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,2acosC=bcosC+ccosB.
(1)求角C的大小;
(2)若c=,a2+b2=10,求△ABC的面积.
【答案】(1);(2)
【解析】
(1)由正弦定理得2sinAcosC=sinBcosC+sinCcosB,由A+B+C=π,求出cosC=,由此求出∠C.(2)由余弦定理得7=10﹣ab,从而ab=3,由此能求出△ABC的面积.
(1)∵△ABC的内角A,B,C的对边分别为a,b,c,2acosC=bcosC+ccosB,
∴2sinAcosC=sinBcosC+sinCcosB,
∵A+B+C=π,∴2sinAcosC=sin(B+C)=sinA,
∴cosC=,∵0<C<π,∴∠C=.
(2)∵c=,a2+b2=10,,
∴由余弦定理得:c2=a2+b2﹣2abcosC,
即7=10﹣ab,解得ab=3,
∴△ABC的面积S===.
科目:高中数学 来源: 题型:
【题目】已知数列{an}是等差数列,数列{bn}是等比数列,Sn是数列{an}的前n项和,a1=b1=1,S2=.
(1)若b2是a1,a3的等差中项,求数列{an}与{bn}的通项公式;
(2)若an∈N+,数列{}是公比为9的等比数列,求证:+++…+<.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)y1y2=-p2,;(2)为定值;
(3)以AB为直径的圆与抛物线的准线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,倾斜角为α(α≠ )的直线l的参数方程为 (t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρcos2θ﹣4sinθ=0.
(I)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)已知点P(1,0).若点M的极坐标为(1, ),直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aex﹣x(a∈R),其中e为自然对数的底数,e=2.71828…
(Ⅰ)判断函数f(x)的单调性,并说明理由
(Ⅱ)若x∈[1,2],不等式f(x)≥e﹣x恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,已知∠A= ,∠B= ,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED= ,EC= .
(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海警基地码头O的正东方向40海里处有海礁界碑M,过点M且与OM成(即北偏西)的直线l在在此处的一段为领海与公海的分界线(如图所示),在码头O北偏东方向领海海面上的A处发现有一艘疑似走私船(可疑船)停留. 基地指挥部决定在测定可疑船的行驶方向后,海警巡逻艇从O处即刻出发,按计算确定方向以可疑船速度的2倍航速前去拦截,假定巡逻艇和可疑船在拦截过程中均未改变航向航速,将在P处恰好截获可疑船.
(1)如果O和A相距6海里,求可疑船被截获处的点P的轨迹;
(2)若要确保在领海内捕获可疑船(即P不能在公海上).则、之间的最大距离是多少海里?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com