精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为的函数是奇函数.

1)求的值;

2)判断函数上的单调性,并证明你的结论.

3)是否存在实数,对于任意,不等式恒成立,若存在,求出实数的取值范围,若不存在,说明理由.

【答案】1

2上的减函数;

3

【解析】

1)因为上的奇函数,所以,代入可求

2)由(1)可得,利用定义,任取,只要说明的符号即可判断;

3)由不等式恒成立,及上的奇函数且是上的减函数,可得恒成立.由题意可得,结合二次函数的性质先求出的最大值,即可求的范围.

1)因为上的奇函数,所以

2上的减函数.

任取

,所以上的减函数.

3)若不等式恒成立,

,又上的奇函数,

所以

上的减函数,所以恒成立.

恒成立.

,其对称轴为

是增函数,

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为R,并且图象关于y轴对称,当x≤-1时,yf(x)的图象是经过点(-2,0)(-1,1)的射线,又在yf(x)的图象中有一部分是顶点在(0,2),且经过点(1,1)的一段抛物线.

(1)试求出函数f(x)的表达式,作出其图象

(2)根据图象说出函数的单调区间,以及在每一个单调区间上函数是增函数还是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)设,求函数的单调区间;

(Ⅱ)当时,为函数图象与函数图象的公共点,且在点处有公共切线,求点的坐标及实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时间著名数学家祖暅提出了祖暅原理:“幂势既同,则积不容异”.意思是:夹在两平行平面间的两个几何体,被平行于这两个平行平面的任何平面所载,若截得的两个截面面积总相等,则这两个几何体的体积相等.为计算球的体积,构造一个底面半径和高都与球半径相等的圆柱,然后再圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,运用祖暅原理可证明此几何体与半球体积相等(任何一个平面所载的两个截面面积都相等).将椭圆 轴旋转一周后得一橄榄状的几何体,类比上述方法,运用祖暅原理可求得其体积等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,且f(2).

(1)求实数mn的值;

(2)求函数f(x)在区间[-2,-1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切于点且经过点求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC,O,M分别为AB,VA的中点.

(1)求证:VB∥平面MOC;

(2)求证:平面MOC⊥平面VAB;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若对任意给定的,关于的方程在区间上总存在唯一的一个解,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)空间四边形的对角线分别为的中点,,求异面直线所成的角;

2)如图,四棱柱中,底面是正方形,侧棱底面的中点.求证:平面

查看答案和解析>>

同步练习册答案