精英家教网 > 高中数学 > 题目详情
(2013•奉贤区二模)设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1),f(x)=log
1
2
(1-x)
,则函数f(x)在(1,2)上的解析式是
y=log
1
2
(x-1)
y=log
1
2
(x-1)
分析:设x∈(1,2),则x-2∈(-1,0),2-x∈(0,1),由已知表达式可求得f(2-x),再由f(x)为周期为2的偶函数,可得f(x)=f(x-2)=f(2-x),从而得到答案.
解答:解:设x∈(1,2),则x-2∈(-1,0),2-x∈(0,1),
所以f(2-x)=log
1
2
[1-(2-x)]
=log
1
2
(x-1)

又f(x)为周期为2的偶函数,
所以f(x)=f(x-2)=f(2-x)=log
1
2
(x-1)
,即y=log
1
2
(x-1)

故答案为:y=log
1
2
(x-1)
点评:本题考查函数解析式的求解及函数的周期性、奇偶性,考查学生灵活运用所学知识解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•奉贤区二模)已知O是坐标原点,点A(-1,1).若点M(x,y)为平面区域
x+y≥2
x≤1
y≤2
上的一个动点,则
OA
OM
的取值范围是
[0,2]
[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)已知函数f(x)=lg(ax-bx)(a>1>b>0),且a2=b2+1,则不等式f(x)>0的解集是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)已知正数x,y满足x+y=xy,则x+y的最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)函数f(x)=2sin2x的最小正周期是
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区二模)在(x-
1x
)8
的二项展开式中,常数项是
70
70

查看答案和解析>>

同步练习册答案