【题目】已知函数,.
(1)当时,求函数的极值;
(2)若对任意,均有恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在宽为的路边安装路灯,灯柱高为,灯杆是半径为的圆的一段劣弧.路灯采用锥形灯罩,灯罩顶到路面的距离为,到灯柱所在直线的距离为.设为灯罩轴线与路面的交点,圆心在线段上.
(1)当为何值时,点恰好在路面中线上?
(2)记圆心在路面上的射影为,且在线段上,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:
1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 | |
2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;
(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)
附注:①参考数据:,,,,.
②参考公式:相关系数,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,左、右焦点分别为,点D在椭圆C上, 的周长为.
(1)求椭圆C的标准方程;
(2)过圆上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com