精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.
(1)当a=1时,求函数f(x)的最小值;
(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;
(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.

(1)1   (2)见解析   (3)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数=.
(1)讨论的单调性;
(2)设,当时,,求的最大值;
(3)已知,估计ln2的近似值(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=ln(1+x)-x-ax2.
(1)当x=1时,f(x)取到极值,求a的值;
(2)当a满足什么条件时,f(x)在区间[-,-]上有单调递增区间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一物体沿直线以速度的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数处取得极值-2.
(1)求函数的解析式;
(2)求曲线在点处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,讨论函数的单调性;
(2)当时,在函数图象上取不同两点A、B,设线段AB的中点为,试探究函数在Q点处的切线与直线AB的位置关系?
(3)试判断当图象是否存在不同的两点A、B具有(2)问中所得出的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最大值;
(2)若,求的取值范围.
(3)证明:  +(n

查看答案和解析>>

同步练习册答案