精英家教网 > 高中数学 > 题目详情
如图所示,在三棱柱ABC-A1B1C1中,AA1B1B为正方形,BB1C1C是菱形,平面AA1B1B⊥平面BB1C1C.
(Ⅰ)求证:BC∥平面AB1C1
(Ⅱ)求证:B1C⊥AC1
(Ⅲ)设点E,F,H,G分别是B1C,AA1,A1B1,B1C1的中点,试判断E,F,H,G四点是否共面,并说明理由.
考点:平面与平面平行的性质,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(Ⅰ)由BC∥B1C1,证明BC∥平面AB1C1
(Ⅱ)先证明AB⊥平面BB1C1C,得AB⊥B1C,再证明B1C⊥平面ABC1,得出B1C⊥AC1
(Ⅲ)E,F,H,G四点不共面,通过证明点F∉平面EHG,即F∈平面AA1C1C,且平面AA1C1C∥平面EFH即可.
解答: 证明:(Ⅰ)在菱形BB1C1C中,BC∥B1C1
因为BC?平面AB1C1,B1C1?平面AB1C1
所以BC∥平面AB1C1;…(3分)
(Ⅱ)连接BC1,在正方形ABB1A1中,AB⊥BB1
因为平面AA1B1B⊥平面BB1C1C,
平面AA1B1B∩平面BB1C1C=BB1
AB?平面ABB1A1
所以AB⊥平面BB1C1C;…(5分)
又因为B1C?平面BB1C1C,
所以AB⊥B1C;…(6分)
在菱形BB1C1C中,BC1⊥B1C;
因为BC1?平面ABC1,AB?平面ABC1,且BC1∩AB=B,
所以B1C⊥平面ABC1;…(8分)
因为AC1?平面ABC1
所以B1C⊥AC1;…(10分)
(Ⅲ)E,F,H,G四点不共面,理由如下;…(11分)
因为E,G分别是B1C,B1C1的中点,
所以GE∥CC1
同理可证:GH∥C1A1
因为GE?平面EHG,
GH?平面EHG,GE∩GH=G,
CC1?平面AA1C1C,A1C1?平面AA1C1C,
所以平面EHG∥平面AA1C1C;
又因为F∈平面AA1C1C,
所以F∉平面EHG,即E,F,H,G四点不共面.…(14分)
点评:本题考查了空间中的平行与垂直的判断与直线的应用问题,也考查了判断空间中的四点是否共面问题,是综合性题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z=
2
1+
3
i
,则|z|=(  )
A、
1
2
B、
3
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R+,lnx>0”的否定是(  )
A、?x∈R+,lnx>0
B、?x∈R+,lnx≤0
C、?x∈R+,lnx>0
D、?x∈R+,lnx≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

x,y满足约束条件
x+y-2≤0
2y-x+2≥0
2x-y+2≥0
,若z=y-2ax取得最大值的最优解不唯一,则实数a的值为(  )
A、1或-
1
2
B、
1
2
或-1
C、2或1
D、2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-a(x-1),其中,a∈R,e是自然对数的底数.
(1)当a=-1时,求函数f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性,并写出相应的单调区间;
(3)已知b∈R,若函数f(x)≥b对任意x∈R都成立,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形BCDE的边长为a,已知AB=
3
BC,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
①AB与DE所成角的正切值是
2

②AB∥CE;
③VB-ACE的体积是
1
6
a2
④平面ABC⊥平面ADC;
⑤直线EA与平面ADB所成角为30°.
其中正确的有
 
.(填写你认为正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心C在x轴上的圆过点A(2,2)和B(4,0).
(1)求圆C的方程;
(2)求过点M(4,6)且与圆C相切的直线方程;
(3)已知线段PQ的端点Q的坐标为(3,5),端点P在圆C上运动,求线段PQ的中点N的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:GH∥平面ACD;
(Ⅱ)若AC=BC=BE=2,求二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在梯形ABCD中,
AB
=2
DC
.
BC
 
.
=6,P为梯形ABCD所在平面上一点,且满足
AP
+
BP
+4
DP
=
0
DA
CB
=
.
DA
 
.
.
DP
 
.
,Q为边AD上的一个动点,则
.
PQ
 
.
的最小值为
 

查看答案和解析>>

同步练习册答案