精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和Sn=1-5+9-13+17-21+…+(-1)n+1(4n-3),则S22-S11的值是________.

-65
分析:分析数列,易得数列中每相邻2项的和为-4,可用分组求和法,则S22=1-5+9-13+17-21+…+81-85=(1-5)+(9-13)+(17-21)+…+(81-85),S11=1-5+9-13+17-21+…+33-37+41=(1-5)+(9-13)+(17-21)+…+(33-37)+41=(-4)×5+41,易得S22与S11的值,相减可得答案.
解答:根据题意,易得S22=1-5+9-13+17-21+…+81-85=(1-5)+(9-13)+(17-21)+…+(81-85)=(-4)×11=-44,
S11=1-5+9-13+17-21+…+33-37+41=(1-5)+(9-13)+(17-21)+…+(33-37)+41=(-4)×5+41=21,
则S22-S11=-44-21=-65;
故答案为-65.
点评:本题考查数列的求和,注意根据不同特点的数列选择对应的方法,如本题中每相邻2项的和为-4,可用分组求和法,但解题时需注意项数为奇数与偶数的不同.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案