【题目】已知函数
(1)判断在上的增减性,并证明你的结论
(2)解关于的不等式
(3)若在上恒成立,求的取值范围
【答案】(1)见解析(2)见解析(3){a | a<0或a≥} .
【解析】分析:(1)根据定义法来证明函数的单调性;(2)即,分两种情况a>0和a<0分类讨论得到解集即可;(3)在恒成立即,,由均值不等式可求右侧函数的最值.
详解:
(1)f(x)在上为减函数
证明方法一:设
在上为减函数
方法二:利用导数证明:f′(x)= <0
∴f(x)在上为减函数
(2)不等式即即
当,不等式的解当a<0,
∵x>0 ∴恒成立
不等式的解
综上所述当a>0时 不等式的解{x|}
当a<0时,不等式的解{x|x>0},
(3)若 在恒成立即
所以因为的最小值为4
所以即或a≥
所以 a的取值范围是{a |a<0或a≥} .
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,单位圆上存在两点,满足均与轴垂直,设与的面积之和记为.
若,求的值;
若对任意的,存在,使得成立,且实数使得数列为递增数列,其中求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形ABCD,AB=1,BC= .将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中( )
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量为x(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为()
A. 90万元B. 120万元
C. 120.25万元D. 60万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.
(1)证明:当0≤x≤1时,
(i)函数f(x)的最大值为|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市国庆节天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这天的认购量与成交量作出如下判断:①日成交量的中位数是;②日成交量超过日平均成交量的有天;③认购量与日期正相关;④月日认购量的增量大于月日成交量的增量.上述判断中错误的个数为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com