精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)判断上的增减性,并证明你的结论

(2)解关于的不等式

(3)若上恒成立,求的取值范围

【答案】(1)见解析(2)见解析(3){a | a<0或a≥} .

【解析】分析:(1)根据定义法来证明函数的单调性;(2),分两种情况a>0a<0分类讨论得到解集即可;(3)恒成立即,由均值不等式可求右侧函数的最值.

详解:

(1)f(x)在上为减函数

证明方法一:设

上为减函数

方法二:利用导数证明:f′(x)= <0

∴f(x)上为减函数

(2)不等式

,不等式的解当a<0,

∵x>0 ∴恒成立

不等式的解

综上所述当a>0 不等式的解{x|}

当a<0时,不等式的解{x|x>0},

(3)若 恒成立即

所以因为的最小值为4

所以a≥

所以 a的取值范围是{a |a<0或a≥} .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,单位圆上存在两点,满足均与轴垂直,设的面积之和记为

,求的值;

若对任意的,存在,使得成立,且实数使得数列为递增数列,其中求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.

(1)y关于x的函数;

(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形, 的中点。

1)证明: 平面;

2)设 ,三棱锥的体积 ,求A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD,AB=1,BC= .将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中(
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21xL2=2x,其中销售量为x(单位:).若该公司在两地共销售15,则能获得的最大利润为()

A. 90万元B. 120万元

C. 120.25万元D. 60万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.
(1)证明:当0≤x≤1时,
(i)函数f(x)的最大值为|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若不等式的解集为,求实数的值;

(2)在(1)的条件下,若存在实数使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市国庆节天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这天的认购量与成交量作出如下判断:①日成交量的中位数是;②日成交量超过日平均成交量的有天;③认购量与日期正相关;④日认购量的增量大于日成交量的增量.上述判断中错误的个数为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案