精英家教网 > 高中数学 > 题目详情
直线与椭圆交于两点,已知
,若且椭圆的离心率,又椭圆经过点
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;
(Ⅰ)(Ⅱ)

试题分析:(Ⅰ)∵  ∴   ∴椭圆的方程为   
(Ⅱ)依题意,设的方程为
  显然,
, 由已知得:
                  
,解得  
点评:椭圆的几何性质是常考知识点,直线与椭圆相交时常联立方程,利用韦达定理找到根与系数的关系,将已知的向量转化为与方程的根有关的关系式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线,点分别为双曲线的左、右焦点,动点轴上方.
(1)若点的坐标为是双曲线的一条渐近线上的点,求以为焦点且经过点的椭圆的方程;
(2)若∠,求△的外接圆的方程;
(3)若在给定直线上任取一点,从点向(2)中圆引一条切线,切点为. 问是否存在一个定点,恒有?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线过点,且与椭圆相切于点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过点的直线与椭圆相交于不同的两点,使得?若存在,试求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线中心在原点且一个焦点为F(,0),直线与其相交于M、N两点,MN中点的横坐标为,则此双曲线的方程是      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知椭圆的离心率为是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为.
(1)求椭圆的方程;
(2)圆两点.当圆心与原点的距离最小时,求圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的一个焦点的直线与椭圆交于两点,则 与椭圆的另一焦点构成,那么的周长是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线的斜率为2且过抛物线的焦点F,又与轴交于点A,为坐标原点,若的面积为4,则抛物线的方程为:
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的左右焦点为,P为双曲线右支上
的任意一点,若的最小值为8a,则双曲线的离心率的取值范围是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系O中,直线与抛物线=2相交于AB两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。

查看答案和解析>>

同步练习册答案