精英家教网 > 高中数学 > 题目详情
用三种不同的颜色,将如图所示的4个区域涂色,每种颜色至少用1次,则相邻的区域不涂同一种颜色的概率为
 
考点:古典概型及其概率计算公式
专题:计算题
分析:不妨从左至右按1-4编号,由于三种颜色必须用全,第一步涂一号有三种涂法,第二步涂二号有二种涂法第三步涂三号时可分为两类研究,然后利用古典概型的概率公式进行求解即可.
解答: 解:由题意,不妨从左至右按1-4编号,由于三种颜色必须用全,第一步涂一号有三种涂法,第二步涂二号有二种涂法第三步涂三号时可分为两类研究,故总的涂色方法为3×2×(1×1+1×2)=18种,
所有情形有
C
2
4
A
3
3
=6×6=36

所以相邻的区域不涂同一种颜色的概率为
18
36
=
1
2
点评:本题考查计数原理的应用和概率的计算,解题的关键是理解题意,根据题设中涂色要求选择用分步原理计数,由于本题要求三种颜色必须全用上,答题时易漏掉这一限制条件导致计数出错,这是本题的易错点,解题时认真审题,考虑全面是做对本题的重点,本题解题方法上大的方面是分步原理,在其中也用到了分类原理,对计数原理考查全面,此种题已多次出现在高考试卷上,要注意总结它的解题规律,分析清楚分类与分步的依据.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列﹛an﹜为等差数列,且a1+a3=8,a2+a4=12.
(1)问2014是否是数列﹛an﹜中的项?如果是,计算它是第几项?否则说明理由;
(2)记﹛an﹜的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若-3<a<b<2,则a-b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从20名学生中随机抽取一名,若抽中女生的概率是
2
5
,则这20名学生中有女生
 
名.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆:
x2
10-m
+
y2
m-2
=1的焦距为4,则m等于(  )
A、4B、8
C、4或8D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个方程中表示y是x的函数的是(  )
①x-2y=6②x2+y=1③x+y2=1④x=
y
A、①②B、①④C、③④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|0≤x≤2},N={y|0≤y≤2},给出下列4个图形,其中能表示集合M到N的函数关系的有(  ) 
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(lga,lgb)关于x轴的对称点为(0,-1),则正数a、b的值分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(
1
x
)=
1
x+1
,则f(x)=(  )
A、
1
1+x
B、
1+x
x
C、
x
1+x
D、1+x

查看答案和解析>>

同步练习册答案