精英家教网 > 高中数学 > 题目详情
13.为使$\sqrt{cosx}$+lg(4-x2)有意义,x的取值范围是[-$\frac{π}{2}$,$\frac{π}{2}$].

分析 根据函数成立的条件建立不等式关系即可得到结论.

解答 解:由$\left\{\begin{array}{l}{cosx≥0}\\{4-{x}^{2}>0}\end{array}\right.$得$\left\{\begin{array}{l}{2kπ-\frac{π}{2}≤x≤2kπ+\frac{π}{2},k∈Z}\\{-2<x<2}\end{array}\right.$,
得-$\frac{π}{2}$≤x≤$\frac{π}{2}$,
故x的取值范围是[-$\frac{π}{2}$,$\frac{π}{2}$],
故答案为:[-$\frac{π}{2}$,$\frac{π}{2}$].

点评 本题主要考查函数定义域的求解,根据函数成立的条件建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,已知AB⊥平面BCD,BC⊥CD,M是CD的中点.则二面角A-CD-B的平面角是(  )
A.∠ADBB.∠BDCC.∠AMBD.∠ACB

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知奇函数y=f(x)的图象关于直线x=-2对称,且f(m)=3,则f(m-4)的值为(  )
A.3B.0C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.为了考察高中生的性别与是否喜欢数学课程之间的关系,在我市的某校高中生中随即抽取了100名学生,得到如下联表:
  不喜欢数学课程喜欢数学课程 总计 
 男 45 10 55
 女 30 15 45
 总 75 25100
由表中数据,计算得K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$≈3.03,
附表:
 P(K2≥k0 0.100.05 0.025 
 k0 2.706 3.8415.024
参照附表,则下列结论正确的是(  )
A.有90%以上的把握认为“性别与是否喜欢数学课程有关”
B.有90%以上的把握认为“性别与是否喜欢数学课程没有关”
C.在犯错误的概率不超过1%的前提下,认为“性别与是否喜欢数学课程有关”
D.在犯错误的概率不超过1%的前提下,认为“性别与是否喜欢数学课程没有关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设抛物线y2=4x的焦点为F,则准线与x轴交于点C,经过点F的直线l交抛物线于A,B两点,若点B在以A,C为直径的圆上,则|AF|-|BF|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,且一个焦点和短轴的两个端点构成面积为1的等腰直角三角形.
(1)求椭圆的标准方程;
(2)过椭圆C右焦点F作直线交椭圆C于点M,N,又直线OM交直线x=2于点T,$\overrightarrow{OT}$=2$\overrightarrow{OM}$,求线段MN的长;
(3)半径为r的圆Q以椭圆C的右顶点为圆心,若存在直线l:y=kx,使直线l与椭圆C交于A,B两点,与圆Q分别交于G、H两点,点G在线段AB上,且|AG|=|BH|,求圆O的半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等差数列{an}中,首项a1=3,公差d=2,若某学生对其中连续10项迸行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为200.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=|x2-k|在[0,2]上的最大值为2,则常数k等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知指数函数y=ax(a>0且a≠1)的图象过点(2,9),则a=3.

查看答案和解析>>

同步练习册答案