精英家教网 > 高中数学 > 题目详情

本小题满分14分)
如图,在直三棱柱中,,点分别是的中点.
(Ⅰ)求证:平面
(Ⅱ)证明:平面平面
(Ⅲ)求多面体A1B1C1BD的体积V.

(Ⅰ)证明:见解析(Ⅱ)证明:见解析;
(Ⅲ)V=

解析试题分析:(I)根据线面平行的判定定理只需证明:AE//平面BC1D即可.
(II)因为,所以,然后再利用勾股定理证明,
从而可证明:,再根据面面垂直的判定定理得平面平面.
(III) 取A1B1中点F,易证:C1F⊥面A1B1BD,从而得到所求四棱锥的高,然后再根据棱锥的体积计算公式计算即可.
(Ⅰ)证明:在矩形中,

是平行四边形.…………………1分
所以,    …………………2分

平面平面
所以平面…………………4分
(Ⅱ)证明:直三棱柱中,,所以平面,…………………6分
平面,所以.…………………7分
在矩形中,,从而
所以,                …………………8分
,所以平面,                  …………………9分
平面,所以平面平面 …………………10分
(Ⅲ)取A1B1中点F,由A1C1=B1C1知C1F⊥A1B1,……………11分
又直三棱柱中侧面ABA1B1⊥底面A1B1C1且交线为A1B1,故C1F⊥面A1B1BD,……12分
∴V=…………………14分
考点:线线,线面,面面平行与垂直的判定与性质,棱锥的体积.
点评:掌握线线、线面,面面垂直的判定与性质定理是解决此类证明的关键,并且还要记住柱,锥,台体的体积及表面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在上,过点//的位置(),
使得.

(I)求证:  (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题11分)如图,在四棱锥中,平面,.

(1)证明:平面 
(2)求和平面所成角的正弦值
(3)求二面角的正切值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在侧棱垂直于底面的三棱柱中,
的中点。

(1)求证:
(2)求与平面所成的角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,等边与直角梯形垂直,,,,.若分别为的中点.(1)求的值; (2)求面与面所成的二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面,四边形中, ,, ,,E为中点.
(1)求证:CD⊥面PAC;(2)求:异面直线BE与AC所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)如图,在平行六面体中,的中点,设

(1)用表示
(2)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分别是D1B,AD的中点,
(1)建立适当的坐标系,求出E点的坐标;
(2)证明:EF是异面直线D1B与AD的公垂线;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

同步练习册答案