精英家教网 > 高中数学 > 题目详情
已知函数(其中a∈R).
(Ⅰ)若函数f(x)在点(1,f(1))处的切线为,求实数a,b的值;
(Ⅱ)求函数f(x)的单调区间.
解:由,可得
(Ⅰ)因为函数f(x)在点(1,f(1))处的切线为,得:
解得
(Ⅱ)令f'(x)>0,得x2+2x﹣a>0…①
当△=4+4a≤0,即a≤﹣1时,不等式①在定义域内恒成立,
所以此时函数f(x)的单调递增区间为(﹣∞,﹣1)和(﹣1,+∞).
当△=4+4a>0,即a>﹣1时,不等式①的解为
又因为x≠﹣1,所以此时函数f(x)的单调递增区间为,单调递减区间为
所以,当a≤﹣1时,函数f(x)的单调递增区间为(﹣∞,﹣1)和(﹣1,+∞);
当a>﹣1时,函数f(x)的单调递增区间为,单调递减区间为..
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年山东省济宁市汶上一中高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a∈R.
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求f(x)在区间[2,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河南省郑州47中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函数,其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在原点处的切线方程;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市西城区(北区)高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知函数,其中a∈R.
(Ⅰ)若函数f(x)为奇函数,求实数a的值;
(Ⅱ)若函数f(x)在区间[2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市东城区高三(上)12月联考数学试卷(理科)(解析版) 题型:解答题

(理)已知函数,其中a∈R.
(Ⅰ)若x=2是f(x)的极值点,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年北京市西城区高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数,其中a∈R.
(Ⅰ)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[2,3]上的最大值和最小值.

查看答案和解析>>

同步练习册答案