精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD中,以D为原点建立空间直角坐标系,E为B的中点,F为的中点,则下列向量中,能作为平面AEF的法向量的是( )

A. (1,-2,4) B. (-4,1,-2)

C. (2,-2,1) D. (1,2,-2)

【答案】B

【解析】

由A、E、F的坐标算出=(0,2,1),=(﹣1,0,2).设=(x,y,z)是平面ABC的一个法向量,利用垂直向量数量积为零的方法建立关于x、y、z的方程组,再取y=1即可得到向量的坐标,从而可得答案.

设正方体棱长为2,A(2,0,0),E(2,2,1),F(1,0,2),

=(0,2,1),=(﹣1,0,2)

设向量=(x,y,z)是平面AEF的一个法向量

,取y=1,得x=﹣4,z=﹣2

=(﹣4,1,﹣2)是平面AEF的一个法向量

因此可得:只有B选项的向量是平面AEF的法向量

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正四棱柱的底面边长,侧棱长,它的外接球的球心为,点的中点,点是球上的任意一点,有以下命题:

的长的最大值为9;

②三棱锥的体积的最大值是;

③存在过点的平面,截球的截面面积为;

④三棱锥的体积的最大值为20;

⑤过点的平面截球所得的截面面积最大时,垂直于该截面.

其中是真命题的序号是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23

②一组数据123345的平均数、众数、中位数都相同;

③一组数据0123,若该组数据的平均值为1,则样本的标准差为2

④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,,则.

其中真命题为(

A.①②④B.②④C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象在点处的切线方程为,求实数ab的值;

2)若,求的单调减区间;

3)对一切实数,求的极小值函数,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;

(2)已知这种产品的年利润zxy的关系为,根据(1)中的结果回答下列问题:

①当年宣传费为10万元时,年销售量及年利润的预报值是多少?

②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.

附:回归方程中的斜率和截距的最小二乘估计公式分别为

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知10件不同产品中有3件是次品,现对它们一一取出(不放回)进行检测,直至取出所有次品为止.

(1)若恰在第5次取到第一件次品,第10次才取到最后一件次品,则这样的不同测试方法数有多少?

(2)若恰在第6次取到最后一件次品,则这样的不同测试方法数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为m为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于MN两点.

(1)求直线l的普通方程和曲线C的直角坐标方程;

(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的首项为0,公差为a;等差数列的首项为0,公差为b.由数列构造数表M,与数表

记数表M中位于第i行第j列的元素为,其中,(ij=123,…).

记数表中位于第i行第j列的元素为,其中.如:.

1)设,请计算

2)设,试求的表达式(用ij表示),并证明:对于整数t,若t不属于数表M,则t属于数表

3)设,对于整数tt不属于数表M,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

同步练习册答案