精英家教网 > 高中数学 > 题目详情

【题目】在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF.
(Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

【答案】证明:(I)取AB的中点D,连结CD,DF,DE. ∵AC=BC,D是AB的中点,∴CD⊥AB.
∵侧面ABB1A1是边长为2的正方形,AE= ,A1F=
∴A1E= ,EF= = ,DE= =
DF= =
∴EF2+DE2=DF2 , ∴DE⊥EF,
又CE⊥EF,CE∩DE=E,CE平面CDE,DE平面CDE,
∴EF⊥平面CDE,又CD平面CDE,
∴CD⊥EF,
又CD⊥AB,AB平面ABB1A1 , EF平面ABB1A1 , AB,EF为相交直线,
∴CD⊥平面ABB1A1 , 又CDABC,
∴平面ABB1A1⊥平面ABC.
(II)∵平面ABB1A1⊥平面ABC,
∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.
∵CA⊥CB,AB=2,∴AC=BC=
以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:

则A( ,0,0),C(0,0,0),C1(0,0,2),E( ,0, ),F( ,2).
=(﹣ ,0,2), =( ,0, ), =( ,2).
设平面CEF的法向量为 =(x,y,z),则
,令z=4,得 =(﹣ ,﹣9 ,4).
=10,| |=6 ,| |=
∴cos< >= =
∴直线AC1与平面CEF所成角的正弦值为
【解析】(I)取AB的中点D,连结CD,DF,DE.计算DE,EF,DF,利用勾股定理的逆定理得出DE⊥EF,由三线合一得CD⊥AB,故而CD⊥平面ABB1A1 , 从而平面ABB1A1⊥平面ABC;(II)以C为原点建立空间直角坐标系,求出 和平面CEF的法向量 ,则直线AC1与平面CEF所成角的正弦值等于|cos< >|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=( )
A.﹣
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点S、A、B、C在半径为 的同一球面上,点S到平面ABC的距离为 ,AB=BC=CA= ,则点S与△ABC中心的距离为(
A.
B.
C.1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移 个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , an是Sn和1的等差中项.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,点是棱上的一个动点,平面交棱于点给出下列命题:

①存在点,使得//平面

对于任意的点平面平面

存在点,使得平面

④对于任意的点,四棱锥的体积均不变.

其中正确命题的序号是______.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.
(1)求M的值;
(2)正数a,b,c满足a+2b+c=M,求证: + ≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是递增的等比数列,a1+a4=9,a2a3=8,则数列的前n项和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是递增数列,即a1=1,a4=8,即q3==8,所以q=2.因而数列的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD—A1B1C1D1

则下列四个命题:

P在直线BC1上运动时,三棱锥A—D1PC的体积不变;

P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变;

P在直线BC1上运动时,二面角P—AD1—C的大小不变;

M是平面A1B1C1D1上到点D和C1距离相等的点,则M点的轨迹是过D1点的直线D1A1

其中真命题的编号是

查看答案和解析>>

同步练习册答案