精英家教网 > 高中数学 > 题目详情
12.表是某市从3月份中随机抽取的10天空气质量指数(AQI)和“PM2.5”(直径小于等于2.5微米的颗粒物)24小时平均浓度的数据,空气质量指数(AQI)小于100表示空气质量优良.
日期编号A1A2A3A4A5A6A7A8A9A10
空气质量指数(AQI)1794098124291332414249589
PM2.5日均浓度(ug/m313558094801001903877066
(1)根据表数据,估计该市当月某日空气质量优良的概率;
(2)在表数据中、在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件M为“抽取的两个日期中,当天‘PM2.5’的24小时平均浓度小于75ug/m3”,求事件M发生的概率.

分析 (1)由表数据知,利用等可能事件概率的求法,即可估计该市当月某日空气质量优良的概率;
(2)确定由(1)知10天中表示空气质量为优良的天数为5,当天“PM2.5”的24小时平均浓度不超过75ug/m3,有编号为A2、A9、A10,共3天,利用等可能事件概率的求法,求事件M发生的概率;

解答 解:(1)由上表数据知,10天中空气质量指数(AQI)小于100的日期编号为:
A2、A3、A5、A9、A10共5天,
故可估计该市当月某日空气质量优良的概率P=$\frac{5}{10}$=$\frac{1}{2}$. 
(2)在表示空气质量为优良的日期A2、A3、A5、A9、A10中随机抽取两个的所有可能的情况为:{ A2,A3},{ A2,A5},{ A2,A9},{ A2,A10},{ A3,A5},{ A3,A9},{ A3,A10},{ A5,A9},{ A5,A10},{ A9,A10},共10种,
两个日期当天“PM2.5”24小时平均浓度小于7575ug/m3,的有:{ A2,A9},{ A2,A10},
{ A9,A10},共3种; 
故事件M发生的概率P(M)=$\frac{3}{10}$.

点评 本题考查等可能事件概率的求法,考查利用数学知识解决实际问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知直角三角形的三边长都是整数且其面积与周长在数值上相等,那么这样的直角三角形有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中正确命题的个数是(  )
(1)cosα≠0是$α≠2kπ+\frac{π}{2}(k∈Z)$的充分必要条件
(2)f(x)=|sinx|+|cosx|,则f(x)最小正周期是π
(3)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变
(4)设随机变量ζ服从正态分布N(0,1),若P(ζ>1)=p,则$P(-1<ζ<0)=\frac{1}{2}-p$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若(ax-l)6展开式中x3的系数为20,则a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正项等比数列{an}中,a2=3,a8=27,则该数列第5项a5为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且椭圆C上的点到右焦点F的距离的最大值为2$\sqrt{2}$+2.
(1)求椭圆C的方程;
(2)过点F且不与x轴垂直或重合的直线l与椭圆C交于M、N两点,问:x轴上是否存在点P,使得∠OPM=∠OPN?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.点到A(12,16)的距离等于它到点B(3,4)的距离的2倍,求该动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定点A($\sqrt{2}$,1),动点M(x,y)的横、纵坐标同时满足三个条件:0≤x≤$\sqrt{2}$,y≤2,ax-y≤0,则$\overrightarrow{OA•}$$\overrightarrow{OM}$的最大值为4的充分不必要条件是(  )
A.a≥0B.1≤a≤$\sqrt{3}$C.a≤$\sqrt{2}$D.0≤a≤$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|x2+2x+m=0},集合B={-1,4},如果A∩B=A且A≠B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案