精英家教网 > 高中数学 > 题目详情
15.已知f(x)是R上的奇函数,其图象与x轴有5个交点,则f(x)=0的所有根之和为0.

分析 由函数y=f(x)是奇函数,知其图象关于原点轴对称,与x轴的自然也关于原点对称可得结论.

解答 解:∵函数y=f(x)是奇函数,
∴其图象关于原点对称,
∴其图象与x轴的交点也关于原点对称,
∴方程f(x)=0 的所有实根之和为0,
故答案为:0.

点评 本题主要考查奇函数的图象关于原点对称,同时考查函数与方程的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+2ax+3,-5≤x≤5.
(1)当a=-1时,求函数的最大值与最小值;
(2)若函数在区间(-5,5)是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知$\overrightarrow{α}$=(sinα,$\sqrt{3}$),$\overrightarrow{b}$=(cosα,1),且0≤α≤2π,若$\overrightarrow{a}$∥$\overrightarrow{b}$,求角α的值;
(2)已知向量$\overrightarrow{a}$、$\overrightarrow{b}$是同一平面内的二个向量,其中$\overrightarrow{a}$=(1,2),若|$\overrightarrow{b}$|=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若三棱锥P-ABC的最长的棱PA=2,且各面均为直角三角形,则此三棱锥的外接球的体积是$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系xOy中,点A(3,0)、B(0,3),P、Q是线段AB上的两个动点,且|PQ|=$\sqrt{2}$,则$\overrightarrow{OP}$•$\overrightarrow{OQ}$的取值范围为(  )
A.[2,6]B.[4,6]C.[4,9)D.[6,9)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+a|-2}$为奇函数.则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.观察此表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,
…问:
(1)此表第n行的最后一个数是多少?
(2)此表第n行的各个数之和是多少?
(3)2008是第几行的第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$═(cosθ,sinθ),向量$\overrightarrow{b}$=($\sqrt{3}$,-1)
(1)求|$\overrightarrow{a}$|;
(2)若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$是平行向量,求向量$\overrightarrow{a}$和θ:
(3)若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$方向相反,求tanθ+cotθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线y=-x+3与坐标轴围成的三角形的面积是$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案