精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(Ⅰ)若函数内有极值,求实数的取值范围;

(Ⅱ)在(Ⅰ)的条件下,对任意,求证:

【答案】(I);(II)证明见解析.

【解析】试题分析:

(I)求得导数,题意说明上有实根且在根的两侧异号,由有两个不等实根,且一根上,于是另一根上,由根的分布知识可得.

(II)由(I)的讨论知的最大值为的最小值是,因此只要证即可,化简,为此只要求出函数上的最小值,利用导数的知识可求解.

试题解析:

(Ⅰ)由定义域为

,要使上有极值,

有两个不同的实根

,①

而且一根在区间上,不妨设

又因为,∴

∴.只需,即,∴,②

联立①②可得:.

(Ⅱ)证明:由(Ⅰ)知,当,∴单调递减,

时,单调递增,

上有最小值,

,都有,

又当单调递增,当

单调递减,

上有最大值即对,都有

又∵

,

上单调递增,∴,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为常数,函数,给出以下结论:

(1)若,则存在唯一零点

(2)若,则

(3)若有两个极值点,则

其中正确结论的个数是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论上的零点个数;

(2)当时,若存在,使,求实数的取值范围.(为自然对数的底数,其值为2.71828……)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意xyR,总有f(x)f(y)f(xy),且当x>0时,f(x)<0f(1)=-.

(1)求证:f(x)R上的单调减函数.

(2)f(x)[3,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轮船A从某港口O要将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以15海里/时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以v海里/时的航速匀速行驶,经过t小时与轮船B相遇,

1)若使相遇时轮船A航距最短,则轮船A的航行速度的大小应为多少?

2)假设轮船B的航行速度为30海里/时,轮船A的最高航速只能达到30海里/时,则轮船A以多大速度及沿什么航行方向行驶才能在最短时间内与轮船B相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.

1)快艇至少以多大的速度行驶才能把稿件送到司机手中?

2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是R上的奇函数,且x>0时,fx=x2-4x+3

求:(1fx)的解析式.

2)已知t0,求函数fx)在区间[tt+1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】江苏省淮阴中学科技兴趣小组在计算机上模拟航天器变轨返回试验.设计方案如图,航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴、为顶点的抛物线的实线部分,降落点为.观测点同时跟踪航天器,试问:当航天器在轴上方时,观测点测得离航天器的距离分别为多少时,应向航天器发出变轨指令?(变轨指令发出时航天器立即变轨)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 若方程恰有三个实数根,则实数的取值范围是_______.

查看答案和解析>>

同步练习册答案