精英家教网 > 高中数学 > 题目详情

【题目】已知,函数.

1)设,若是奇函数,求的值;

2)设,判断函数上的单调性并加以证明;

3)设,函数的图象是否关于某垂直于轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.

【答案】1;(2)证明见解析;(3)对称轴为,理由见解析.

【解析】

1)根据已知条件,将代入函数的解析式,得出,利用奇函数的定义,可求出实数的值;

2)判断出函数和函数的单调性,然后利用函数单调性的运算法则,可判断出函数的单调性,然后利用函数单调性的定义加以证明;

3)根据函数图象的对称轴为直线,得出对任意的实数恒成立,即可求出实数的值.

1)由已知,,由于函数为奇函数,

对任意的恒成立,,因此,

2)当时,函数为增函数,函数为减函数,

,所以,函数上是增函数,

下面利用定义来证明出函数的单调性.

任取,则

,即,又

,所以,,即.

因此,函数上是增函数;

3,若函数的图象是轴对称图形,且对称轴为直线

,即

对任意的恒成立,,即

因此,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线的方程为,曲线的方程为.以极点为原点,极轴为轴正半轴建立直角坐标系

(1)求曲线的直角坐标方程;

(2)若曲线轴相交于点,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,为其前n项的和,满足.

(1)求数列的通项公式;

(2)设数列的前n项和为,数列的前n项和为,求证:当

(3)若函数的定义域为R,并且,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部名同学参加学校社团的情况,数据如下表:(单位:人)

参加书法社

未参加书法社

参加辩论社

未参加辩论社

1)从该班随机选名同学,求该同学至少参加一个社团的概率;

2)在既参加书法社又参加辩论社的名同学中,有名男同学,名女同学.现从这名同学中男女姓各随机选人(每人被选到的可能性相同).

(i)列举出所有可能结果;

(ii)设为事件“被选中且未被选中”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少05万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.

1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;

2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?











查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形的直角梯形,,为线段的中点,平面为线段上一点(不与端点重合).

(Ⅰ)若

(i)求证:平面

(ii)求直线与平面所成的角的大小;

(Ⅱ)否存在实数满足,使得平面与平面所成的锐角为,若存在,确定的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知椭圆是长轴的一个端点,弦过椭圆的中心,且.

(Ⅰ)求椭圆的方程:

(Ⅱ)设为椭圆上异于且不重合的两点,且的平分线总是垂直于轴,是否存在实数,使得,若存在,请求出的最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):

A

6 6.5 7 7.5 8

B

6 7 8 9 10 11 12

C

3 4.5 6 7.5 9 10.5 12 13.5

)试估计C班的学生人数;

)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;

)再从ABC三个班中各随机抽取一名学生,他们该周的锻炼时间分别是798.25(单位:小时).3个新数据与表格中的数据构成的新样本的平均数记为,表格中数据的平均数记为,试判断的大小.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求函数的极值;

2)设函数,求函数的单调区间;

3)若在上存在,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案