【题目】已知,且,且,函数.
(1)设,,若是奇函数,求的值;
(2)设,,判断函数在上的单调性并加以证明;
(3)设,,,函数的图象是否关于某垂直于轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.
【答案】(1);(2)证明见解析;(3)对称轴为,理由见解析.
【解析】
(1)根据已知条件,将代入函数的解析式,得出,利用奇函数的定义,可求出实数的值;
(2)判断出函数和函数的单调性,然后利用函数单调性的运算法则,可判断出函数的单调性,然后利用函数单调性的定义加以证明;
(3)根据函数图象的对称轴为直线,得出对任意的实数恒成立,即可求出实数的值.
(1)由已知,,,由于函数为奇函数,
则对任意的恒成立,,因此,;
(2)当时,函数为增函数,函数为减函数,
又,所以,函数在上是增函数,
下面利用定义来证明出函数的单调性.
任取,则,
,,即,又,,
,,所以,,即.
因此,函数在上是增函数;
(3),若函数的图象是轴对称图形,且对称轴为直线,
则,,
即,即,
即对任意的恒成立,,即,
因此,.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线的方程为,曲线的方程为.以极点为原点,极轴为轴正半轴建立直角坐标系.
(1)求曲线,的直角坐标方程;
(2)若曲线与轴相交于点,与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,为其前n项的和,满足.
(1)求数列的通项公式;
(2)设数列的前n项和为,数列的前n项和为,求证:当时;
(3)若函数的定义域为R,并且,求证.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学调查了某班全部名同学参加学校社团的情况,数据如下表:(单位:人)
参加书法社 | 未参加书法社 | |
参加辩论社 | ||
未参加辩论社 |
(1)从该班随机选名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社又参加辩论社的名同学中,有名男同学,名女同学.现从这名同学中男女姓各随机选人(每人被选到的可能性相同).
(i)列举出所有可能结果;
(ii)设为事件“被选中且未被选中”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列,每年发放电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
. |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形的直角梯形,,,,为线段的中点,平面,,为线段上一点(不与端点重合).
(Ⅰ)若,
(i)求证:平面;
(ii)求直线与平面所成的角的大小;
(Ⅱ)否存在实数满足,使得平面与平面所成的锐角为,若存在,确定的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知椭圆,是长轴的一个端点,弦过椭圆的中心,且,.
(Ⅰ)求椭圆的方程:
(Ⅱ)设为椭圆上异于且不重合的两点,且的平分线总是垂直于轴,是否存在实数,使得,若存在,请求出的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(Ⅰ)试估计C班的学生人数;
(Ⅱ)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(Ⅲ)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为,表格中数据的平均数记为,试判断和的大小.(结论不要求证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com