精英家教网 > 高中数学 > 题目详情

【题目】为考察某种药物预防疾病的效果,进行动物试验,得到如下药物效果与动物试验列联表:

患病

未患病

总计

服用药

10

45

55

没服用药

20

30

50

总计

30

75

105

经过计算,,根据这一数据分析,下列说法正确的是

临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A. 有97.5%的把握认为服药情况与是否患病之间有关系

B. 有99%的把握认为服药情况与是否患病之间有关系

C. 有99.5%的把握认为服药情况与是否患病之间有关系

D. 没有理由认为服药情况与是否患病之间有关系

【答案】A

【解析】

根据的观测值,找出临界的的值,并由此计算出犯错误的概率,即可作出相应的结论。

因此,有的把握认为服药情况与是否患病之间有关系,故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在斜三棱柱中,,平面底面,点、D分别是线段、BC的中点.

(1)求证:

(2)求证:AD//平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求证:f(x)(0)上是增函数;

(2)若,上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,其离心率,且短轴的个端点与两焦点组成的三角形面积为,过椭圆上的点轴的垂线,垂足为,点满足,设点的轨迹为曲线.

(1)求曲线的方程;

(2)若直线与曲线相切,且交椭圆于两点, ,记的面积为, 的面积为,求的最大值 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. 

(Ⅰ)若,证明:函数上的减函数;

(Ⅱ)若曲线在点处的切线与直线平行,求的值;

(Ⅲ)若,证明: (其中…是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

1)求实数的值;

2)判断并证明函数的单调性;

3)若存在,使得函数在区间上的值域为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼 让斑马线”行为统计数据:

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)预测该路口 9月份的不“礼让斑马线”违章驾驶员人数;

(3)若从表中3、4月份分别抽取4人和2人,然后再从中任选2 人进行交规调查,求抽到的两人恰好来自同一月份的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)若,函数在区间上的最大值是,最小值是,求的值;

(2)用定义法证明在其定义域上是减函数;

(3)设, 若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,为正方形,,二面角的余弦值为,且.

(1)证明:平面平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案