精英家教网 > 高中数学 > 题目详情

【题目】数列{an}的前n项和为Sn , 2Sn﹣nan=n(n∈N*),若S20=﹣360,则a2=

【答案】-1
【解析】解:∵2Sn﹣nan=n(n∈N*),
∴Sn=
,解得a1=1,
,∴{an}是等差数列,
∵S20=﹣360,∴S20= =﹣360,
解得a20+1=﹣36,即a20=﹣37,
∴19d=a20﹣a1=﹣38,解得d=﹣2,
∴a2=a1+d=1﹣2=﹣1.
所以答案是:﹣1.
【考点精析】认真审题,首先需要了解数列的前n项和(数列{an}的前n项和sn与通项an的关系),还要掌握数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某位同学在2015年5月进行社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了5月1日至5月5日的白天平均气温x(°C)与该奶茶店的这种饮料销量y(杯),得到如下数据:

5月1日

5月2日

5月3日

5月4日

5月5日

平均气温x(°C)

9

10

12

11

8

销量y(杯)

23

25

30

26

21


(1)若从这五组数据中随机抽出2组,求抽出的2组数据不是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程 = x+
(参考公式: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需要增加投入100元,最大月产量是400台.已知总收益满足函数 ,其中x是仪器的月产量(单位:台).
(1)将利润y(单位:元)表示为月产量x(单位:台)的函数;
(2)当月产量为何值时,公司所获得利润最大?最大利润为多少?(总收益=总成本+利润).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2mx+10(m>1).
(1)若f(m)=1,求函数f(x)的解析式;
(2)若f(x)在区间(﹣∞,2]上是减函数,且对于任意的x1 , x2∈[1,m+1],|f(x1)﹣f(x2)|≤9恒成立,求实数m的取值范围;
(3)若f(x)在区间[3,5]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 的离心率为 ,且经过点M 的直径C1的长轴.如图,C是椭圆短轴端点,动直线AB过点C且与圆C2交于A,B两点,CD垂直于AB交椭圆于点D.

(1)求椭圆C1的方程;
(2)求△ABD面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是同一函数的是( )

②f(x)=x与
③f(x)=x0
④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的单调区间;
(2)若函数f(x)的定义域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+x﹣a.a∈R
(1)若不等式f(x)<b的解集为(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

同步练习册答案