精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在R上的函数,f(0)=2,对任意x∈R,f(x)+f′(x)>1,则不等式exf(x)>ex+1的解集为(
A.(0,+∞)
B.(﹣∞,0)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

【答案】A
【解析】解:令g(x)=exf(x)﹣ex
则g′(x)=exf(x)+exf′(x)﹣ex
∵对任意x∈R,f(x)+f′(x)>1,
∴g′(x)=ex[f(x)+f′(x)﹣1]>0,
∴函数y=g(x)在R上单调递增.
∵f(0)=2,
∴g(0)=1.
∴当x<0时,g(x)<1;
当x>0时,g(x)>1.
∵exf(x)>ex+1,
∴exf(x)﹣ex>1,
即g(x)>1,
∴x>0.
故选A.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AB=5,BC=4,AC=CC1=3,D为AB的中点

(1)求证:AC⊥BC1
(2)求异面直线AC1与CB1所成角的余弦值;
(3)求二面角D﹣CB1﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,按系统抽样的方法从中抽取一个容量为50的样本,如果在第一组抽得的编号是0015,则在第21组抽得的编号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线y2=2px(p>0)的焦点,斜率为2 的直线交抛物线于A(x1 , y1)和B(x2 , y2)(x1<x2)两点,且|AB|=9,
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若 ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m(sinx+cosx)﹣4sinxcosx,x∈[0, ],m∈R.
(1)设t=sinx+cosx,x∈[0, ],将f(x)表示为关于t的函数关系式g(t),并求出t的取值范围;
(2)若关于x的不等式f(x)≥0对所有的x∈[0, ]恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)﹣2m+4=0在[0, ]上有实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣3,1), =(1,﹣2), = +k (k∈R).
(1)若 与向量2 垂直,求实数k的值;
(2)若向量 =(1,﹣1),且 与向量k + 平行,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),函数f(x)= ﹣m| + |+1,x∈[﹣ ],m∈R.
(1)当m=0时,求f( )的值;
(2)若f(x)的最小值为﹣1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+ m2 , x∈[﹣ ]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)对于定义域内的任意x都满足 ,则称f(x)具有性质M.
(1)很明显,函数 (x∈(0,+∞)具有性质M;请证明 (x∈(0,+∞)在(0,1)上是减函数,在(1,+∞)上是增函数.
(2)已知函数g(x)=|lnx|,点A(1,0),直线y=t(t>0)与g(x)的图象相交于B、C两点(B在左边),验证函数g(x)具有性质M并证明|AB|<|AC|.
(3)已知函数 ,是否存在正数m,n,k,当h(x)的定义域为[m,n]时,其值域为[km,kn],若存在,求k的范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(x+ )图象上各点的横坐标缩短到原来的 倍(纵坐标不变),再向右平移 个单位,那么所得图象的一条对称轴方程为(
A.x=﹣
B.x=﹣
C.x=
D.x=

查看答案和解析>>

同步练习册答案