精英家教网 > 高中数学 > 题目详情

【题目】已知函数图象上两相邻对称轴之间的距离为_______________

)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;

)若动直线的图象分别交于两点,求线段长度的最大值及此时的值.

注:如果选择多个条件分别解答,按第一个解答计分.

【答案】)选①或②或③,;()当时,线段的长取到最大值.

【解析】

)先根据题中信息求出函数的最小正周期,进而得出.

选①,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;

选②,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;

选③,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;

)令,利用三角恒等变换思想化简函数的解析式,利用正弦型函数的基本性质求出上的最大值和最小值,由此可求得线段长度的最大值及此时的值.

)由于函数图象上两相邻对称轴之间的距离为,则该函数的最小正周期为,此时.

若选①,则函数的一条对称轴,则

,当时,

此时,

若选②,则函数的一个对称中心,则

,当时,

此时,

若选③,则函数的图象过点,则

,解得,此时,.

综上所述,

)令

,当时,即当时,

线段的长取到最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an

Ⅱ)求数列{n2an}的前n项和Tn

Ⅲ)对任意nN*,使得 恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, ,点E在棱PB上.

(Ⅰ)求证:平面

(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, .

(1)证明:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.

(Ⅰ)从抽取的12人中随机选取3人,记表示成绩优良的人数,求的分布列及数学期望;

(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到人的成绩是优良的可能性最大,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:坐标系与参数方程选讲.

在平面直角坐标系中,曲线为参数,实数),曲线

为参数,实数). 在以为极点, 轴的正半轴为极轴的极坐标系中,射线交于两点,与交于两点. 当时, ;当时, .

(1)求的值; (2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,x R其中a>0.

(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)若函数f(x)在区间(-3,0)内恰有两个零点,求a的取值范围;

(Ⅲ)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记 ,求函数g(t)在区间[-4,-1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下是我们常见的空间几何体.

1 2 3 4 5 6 7 8 9)(10

11

1)以上几何体中哪些是棱柱?

2)一个几何体为棱柱的充要条件是什么?

3)如何求以上几何体的表面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数

(1)设,求的单调区间;

(2)设导数,

(i)证明:当时,

(ii)设关于的方程的根为,求证:

查看答案和解析>>

同步练习册答案