精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=ex(2x-1),g(x)=kx-k,其中k<1,若存在唯一的整数解,使得f(x0)<g(x0),则k的取值范围是(  )
A.[$-\frac{3}{2e},1$)B.[$\frac{3}{2e}$,1)C.[$\frac{3}{2e},\frac{3}{4}$)D.[$-\frac{3}{2e},\frac{3}{4}$)

分析 函数f(x)=ex(2x-1),g(x)=kx-k,问题转化为存在唯一的整数x0使得f(x0)在直线y=kx-k的下方,求导数可得函数的极值,数形结合可得-k>f(0)=-1且f(-1)=-3e-1≥-k-k,解关于k的不等式组可得.

解答 解:函数f(x)=ex(2x-1),g(x)=kx-k,
由题意知存在唯一的整数x0使得f(x0)在直线y=kx-k的下方,
∵f′(x)=ex(2x-1)+2ex=ex(2x+1),
∴当x<-$\frac{1}{2}$时,f′(x)<0,当x>-$\frac{1}{2}$时,f′(x)>0,
∴当x=-$\frac{1}{2}$时,f(x)取最小值-2${e}^{-\frac{1}{2}}$,
当x=0时,f(0)=-1,当x=1时,f(1)=e>0,
直线y=kx-k恒过定点(1,0)且斜率为k,
故-k>f(0)=-1且f(-1)=-3e-1≥-k-k,
解得$\frac{3}{2e}$≤k<1.
故选B.

点评 本题考查导数和极值,涉及数形结合和转化的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=2x2+6x-3,若f(m+x)=f(m-x),则m等于(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)是定义在R上的偶函数,且在(-∞,0)上是增函数,则f(-2)与f(a2-2a+3)(a∈R)的大小关系是f(-2)≥f(a2-2a+3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示的为函数y=Asin(ωx+φ)+k的一段图象,求此函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC中,a=1,b=$\sqrt{2}$,c=$\sqrt{5}$,则角C等于(  )
A.45°B.45°或135°C.135°D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求点A(1,2)关于点B(-1,2)的对称点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,且cosα=$\frac{1}{7}$,cos(α+β)=$-\frac{11}{14}$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.把$\sqrt{6}$,$\root{3}{15}$,$\root{6}{219}$按由小到大的顺序排列为$\sqrt{6}$<$\root{6}{219}$<$\root{3}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求解关于x的不等式x2+2m<(m+2)x.

查看答案和解析>>

同步练习册答案