分析 作直径AD,连接BD,根据余弦定理求出cosC,根据正弦的定义求出圆的直径,得到答案.
解答 解:作直径AD,连接BD,
∵AC=13,BC=14,AB=15,
∴152=132+142-2×13×14×cosC,
∴cosC=$\frac{5}{13}$,
∴sinC=$\frac{12}{13}$
∵∠D=∠C,
∴sinD=$\frac{12}{13}$
∴AD=$\frac{13}{\frac{12}{13}}$=$\frac{169}{12}$,
∴△ABC外接圆⊙O的半径r为$\frac{169}{24}$.
点评 本题考查的是三角形外接圆和外心的概念,掌握余弦定理和圆周角定理是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{b}{2}$,-a2)∪(a2,$\frac{b}{2}$) | B. | (-$\frac{b}{2}$,a2)∪(-a2,$\frac{b}{2}$) | C. | (-$\frac{b}{2}$,-a2)∪(a2,b) | D. | (-b,-a2)∪(a2,$\frac{b}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com