精英家教网 > 高中数学 > 题目详情

【题目】下列关于命题的说法错误的是(
A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”
B.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
C.若命题P:n∈N,2n>1000,则﹣P:n∈N,2n≤1000
D.命题“x∈(﹣∞,0),2x<3x”是真命题

【答案】D
【解析】解:因为命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”,所以A正确; 由a=2能得到函数f(x)=logax在区间(0,+∞)上为增函数,反之,函数f(x)=logax在区间(0,+∞)上为增函数,a不一定大于2,所以“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件,所以选项B正确;
命题P:n∈N,2n>1000,的否定为¬P:n∈N,2n≤1000,所以选项C正确;
因为当x<0时恒有2x>3x , 所以命题“x∈(﹣∞,0),2x<3x”为假命题,所以D不正确.
故选D.
【考点精析】本题主要考查了全称命题和特称命题的相关知识点,需要掌握全称命题,它的否定;全称命题的否定是特称命题;特称命题,它的否定;特称命题的否定是全称命题才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n和为Sn , a1=1,Sn=nan﹣2n2+2n(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)是否存在自然数n,使得S1+ + +…+ +2n=1124?若存在,求出n的值; 若不存在,请说明理由;
(3)设cn= (n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn (m∈Z),对n∈N*恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1 , F2是一对相关曲线的焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中椭圆的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,其中a>1
(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是椭圆C: +y2=1的左、右焦点.
(1)若P是第一象限内该椭圆上的一点, =﹣ ,求点P的坐标;
(2)设过定点M(0,2)的直线l与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a﹣c)cosB=bcosC,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是偶函数,则下列结论可能成立的是(
A. ??
B.
C. ??
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),用水量不超过 x 的部分按平价收费,超出 x 的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了 100 位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 a 的值;
(Ⅱ)若该市政府希望使 85%的居民每月的用水量不超过标准 x(吨),估计 x 的值,并说明理由;
(Ⅲ)已知平价收费标准为 4 元/吨,议价收费标准为 8元/吨.当 x=3时,估计该市居民的月平均水费.(同一组中的数据用该组区间的中点值代替)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1 , F2 , 且|F1F2|=2,点(1, )在椭圆C上.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为 ,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

同步练习册答案