精英家教网 > 高中数学 > 题目详情

【题目】已知函数为实数)的图像在点处的切线方程为.

(1)求实数的值及函数的单调区间;

(2)设函数,证明时, .

【答案】(1)函数的单调递减区间为,单调递增区间为;(2)见解析.

【解析】试题分析:(1)由导数几何意义得,又,解方程组可得.再求导函数零点,根据导函数符号变化规律确定函数单调区间,(2)先化简条件,再等价转化不等式:要证,需证,即证,最后构造函数,其中,利用导数研究函数单调性: 在区间内单调递增,即得,从而结论得证.

试题解析:(1)由题得,函数的定义域为

因为曲线在点处的切线方程为

所以解得.

,得

时, 在区间内单调递减;

时, 在区间内单调递增.

所以函数的单调递减区间为,单调递增区间为.

(2)由(1)得, .

,得,即.

要证,需证,即证

,则要证,等价于证: .

,则

在区间内单调递增, ,

,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在某港口处获悉,其正东方向距离20n mile的处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°距港口10n mile的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.

(1)求接到救援命令时救援船距渔船的距离;

(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是 的中点.

(1)求证: 平面

(2)求二面角的大小;

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面,底面是梯形,.

(1)求证:平面平面

(2)在线段上是否存在一点,使平面,若存在,请确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(x1 , f(x1)),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ) 图象上的任意两点,且角φ的终边经过点 ,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)当 时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 是正三角形,四边形是矩形,且.

(1)求证:平面平面

(2)若点在线段上,且,当三棱锥的体积为时,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,焦点为,点在抛物线上,且的距离比到直线的距离小1.

(1)求抛物线的方程;

(2)若点为直线上的任意一点,过点作抛物线的切线,切点分别为,求证:直线恒过某一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为,抛物线上一点的横坐标为1,且到焦点的距离为2.

(1)求抛物线的方程;

(2)设是抛物线上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(14分)关于x的不等式ax2+(a﹣2)x﹣2≥0(a∈R)

(1)已知不等式的解集为(﹣∞,﹣1]∪[2,+∞),求a的值;

(2)解关于x的不等式ax2+(a﹣2)x﹣2≥0.

查看答案和解析>>

同步练习册答案