精英家教网 > 高中数学 > 题目详情
设a>0,函数f(x)=x2+a|lnx-1|.
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x∈[1,+∞)时,求函数f(x)的最小值.
分析:(1)将a=1代入,对函数f(x)进行求导得到切线的斜率=f'(1),切点为(1,2),从而得到切线方程.
(2)分x≥e和x<e两种情况讨论.分别对函数f(x)进行求导,根据导函数的正负判断出函数f(x)的单调性后可得到答案.
解答:解(1)当a=1时,f(x)=x2+|lnx-1|
令x=1得f(1)=2,f'(1)=1,所以切点为(1,2),切线的斜率为1,
所以曲线y=f(x)在x=1处的切线方程为:x-y+1=0.
(2)①当x≥e时,f(x)=x2+alnx-a,f′(x)=2x+
a
x
(x≥e)
∵a>0,
∴f(x)>0恒成立.
∴f(x)在[e,+∞)上增函数.
故当x=e时,ymin=f(e)=e2
②当1≤x<e时,f(x)=x2-alnx+a,
f′(x)=2x-
a
x
=
2
x
(x+
a
2
)(x-
a
2
)
(1≤x<e)
(i)当
a
2
≤1
,即0<a≤2时,f'(x)在x∈(1,e)时为正数,
所以f(x)在区间[1,e)上为增函数.
故当x=1时,ymin=1+a,且此时f(1)<f(e)
(ii)当1<
a
2
<e
,即2<a<2e2时,
f'(x)在x∈(1,
a
2
)
时为负数,在间x∈(
a
2
,e
)
时为正数
所以f(x)在区间[1,
a
2
)
上为减函数,在(
a
2
,e]
上为增函数
故当x=
a
2
时,ymin=
3a
2
-
a
2
ln
a
2

且此时f(
a
2
)<f(e)

(iii)当
a
2
≥e
;即a≥2e2时,
f'(x)在x∈(1,e)时为负数,
所以f(x)在区间[1,e]上为减函数,
当x=e时,ymin=f(e)=e2
综上所述,当a≥2e2时,f(x)在x≥e时和1≤x≤e时的最小值都是e2
所以此时f(x)的最小值为f(e)=e2
当2<a<2e2时,f(x)在x≥e时的最小值为f(
a
2
)=
3a
2
-
a
2
ln
a
2

f(
a
2
)<f(e)

所以此时f(x)的最小值为f(
a
2
)=
3a
2
-
a
2
ln
a
2

当0<a≤2时,在x≥e时最小值为e2,在1≤x<e时的最小值为f(1)=1+a,
而f(1)<f(e),所以此时f(x)的最小值为f(1)=1+a
所以函数y=f(x)的最小值为ymin=
1+a,0<a≤2
3a
2
-
a
2
ln
a
2
,2<a≤2e2
e2,a>2e2
点评:本题主要考查函数导数的几何意义和函数的单调性与其导函数的正负之间的关系.当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,函数f(x)=x3-ax在[1,+∞)上是单调函数.则实数a的取值范围为
(0,3]
(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆模拟)设a>0,函数f(x)=lnx-ax,g(x)=lnx-
2(x-1)x+1

(1)证明:当x>1时,g(x)>0恒成立;
(2)若函数f(x)无零点,求实数a的取值范围;
(3)若函数f(x)有两个相异零点x1、x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,函数f (x) 是定义在(0,+∞)的单调递增的函数且f (
axx-1
)<f(2),试求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,函数f(x)=
12
x2-(a+1)x+a(1+ln x)

(1)求曲线y=f(x)在(2,f(2))处与直线y=-x+1垂直的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

同步练习册答案