精英家教网 > 高中数学 > 题目详情

【题目】如图,设椭圆C1 =1(a>b>0),长轴的右端点与抛物线C2:y2=8x的焦点F重合,且椭圆C1的离心率是
(1)求椭圆C1的标准方程;
(2)过F作直线l交抛物线C2于A,B两点,过F且与直线l垂直的直线交椭圆C1于另一点C,求△ABC面积的最小值,以及取到最小值时直线l的方程.

【答案】
(1)解:∵椭圆C1 =1(a>b>0),长轴的右端点与抛物线C2:y2=8x的焦点F重合,∴a=2,

又∵椭圆C1的离心率是 .∴c= b=1,∴椭圆C1的标准方程:


(2)解:过点F(2,0)的直线l的方程设为:x=my+2,设A(x1,y1),B(x2,y2

联立 得y2﹣8my﹣16=0.

y1+y2=8m,y1y2=﹣16,∴|AB|= =8(1+m2

过F且与直线l垂直的直线设为:y=﹣m(x﹣2)

联立 得(1+4m2)x2﹣16m2x+16m2﹣4=0,

xC+2= xC=

∴|CF|=

△ABC面积s= |AB||CF|=

,则s=f(t)= ,f′(t)=

令f′(t)=0,则t2= ,即1+m2= 时,△ABC面积最小.

即当m=± 时,△ABC面积的最小值为9,此时直线l的方程为:x=± y+2


【解析】(1)由已知可得a,又由椭圆C1的离心率得c,b=1即可.(2)过点F(2,0)的直线l的方程设为:x=my+2,设A(x1 , y1),B(x2 , y2)联立 得y2﹣8my﹣16=0.|AB|= ,同理得|CF|= .△ABC面积s= |AB||CF|= .令 ,则s=f(t)= ,利用导数求最值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)设A(x1 , f(x1)),B(x2 , f(x2)),且x1≠x2 , 证明: <f′( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式 恒成立,则实数a的取值范围为(
A.[15,+∞)
B.
C.[1,+∞)
D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的两顶点坐标A(﹣1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.
(I)求曲线M的方程;
(Ⅱ)设直线BC与曲线M的另一交点为D,当点A在以线段CD为直径的圆上时,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,已知角A,B,C所对的边分别为a,b,c, + = ,b=4,且a>c.
(1)求ac的值;
(2)若△ABC的面积为2 ,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①定义在R上的函数f(x)满足f(2)>f(1),则f(x)一定不是R上的减函数;
②用反证法证明命题“若实数a,b,满足a2+b2=0,则a,b都为0”时,“假设命题的结论不成立”的叙述是“假设a,b都不为0”.
③把函数y=sin(2x+ )的图象向右平移 个单位长度,所得到的图象的函数解析式为y=sin2x.
④“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充分不必要条件.
其中所有正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为 ;两小时以上且不超过三小时还车的概率分别为 ;两人租车时间都不会超过四小时. (Ⅰ)求甲乙两人所付的租车费用相同的概率.
(Ⅱ)设甲乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 则f(﹣1)= , 若方程f(x)=m有两个不同的实数根,则m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足an+1+an=92n﹣1 , n∈N*
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn , 若不等式Sn>tan﹣1,对一切n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案