【题目】把6本不同的书,全部分给甲,乙,丙三人,在下列不同情形下,各有多少种分法?(用数字作答)
(Ⅰ)甲得2本;
(Ⅱ)每人2本;
(Ⅲ)有1人4本,其余两人各1本.
【答案】(Ⅰ)240种(Ⅱ)90种(Ⅲ)90种
【解析】
(Ⅰ)根据题意,分2步进行①,在6本书中任选2本,分给甲,②,将剩下的4本分给乙、丙,由分步计数原理计算可得答案;
(Ⅱ)根据题意,分2步进行①,将6本书平均分成3组,②,将分好的3组全排列,分给甲乙丙三人,由分步计数原理计算可得答案;
(Ⅲ)根据题意,分2步进行①,在6本书中任选4本,分给三人中1人,②,将剩下的2本全排列,安排给剩下的2人,由分步计数原理计算可得答案;
(Ⅰ)根据题意,分2步进行
①,在6本书中任选2本,分给甲,有C62=15种选法,
②,将剩下的4本分给乙、丙,每本书都有2种分法,则有2×2×2×2=16种分法,
则甲得2本的分法有15×16=240种;
(Ⅱ)根据题意,分2步进行
①,将6本书平均分成3组,有15种分组方法,
②,将分好的3组全排列,分给甲乙丙三人,有A33=6种情况,
则有15×6=90种分法;
(Ⅲ)根据题意,分2步进行
①,在6本书中任选4本,分给三人中1人,有C64×C31=45种分法,
②,将剩下的2本全排列,安排给剩下的2人,有A22=2种情况,
则有45×2=90种分法.
科目:高中数学 来源: 题型:
【题目】已知椭圆及点,若直线与椭圆交于点,且( 为坐标原点),椭圆的离心率为.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆于不同的两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且满足不等式22a+1>25a﹣2.
(1)求实数a的取值范围;
(2)求不等式loga(3x+1)<loga(7﹣5x);
(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)当时,证明:;
(Ⅱ)的图象与的图象是否存在公切线(公切线:同时与两条曲线相切的直线)?如果存在,有几条公切线,请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】长沙某公司生产一种高科技晶片100片,生产过程中由于受到一些不可抗因素的影响,晶片会受到一定程度的磨损,因此在生产结束之后需要由测试人员进行相应的指标测试.指标测试情况统计如表所示:
若,则称该晶片为合格品,否则该晶片为劣质品.
(1)试求本次生产过程中该公司生产出合格品的频率以及数量;
(2)求这批晶片测试指标的平均值;
(3)现按照分层抽样的方法在测试指标在与之间的晶片中抽取6个晶片,再从这6个晶片中任取2个晶片进入深入分析,求恰有1个晶片的测试指标在之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率,记该班级完成首背诵后的总得分为.
(1)求且的概率;
(2)记,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点为极点,以轴正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为.
(1)请分别写出直线与曲线的直角坐标方程;
(2)已知直线与曲线交于,两点,设,且,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com