精英家教网 > 高中数学 > 题目详情

已知△OFQ的面积为,且.

(I)设,求向量夹角的取值范围;

(II)若以O为中心,F为焦点的双曲线经过点Q(如图),设Fc, 0),Q(x1, y1),,当||取最小值时,求此双曲线的方程.

(I) f(x)=g(x)=.                 

(II)证明见解析                                   

(III) 当上是增函数.(0,1)是减函数;

上是减函数. (0,1)是增函数.


解析:

(I) ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=ax

f(x)是奇函数,g(x)是偶函数,∴-f(x)+g(x)=ax

f(x)=g(x)=.                  

(II) 是R上的减函数,

y=f 1(x)也是R上的减函数.                  

                                    

(III)

 n>2,上是增函数.(0,1)是减函数;

上是减函数. (0,1)是增函数.                            

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知△OFQ的面积为2
6
,且
OF
FQ
=m

(1)当
6
<m<4
6
时,求向量
OF
FQ
的夹角θ的取值范围;
(2)设|
OF
|=c,m=(
6
4
-1)c2
,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当|
OQ
|
取得最小值时,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知△OFQ的面积为S,且
OF
FQ
=1

(Ⅰ)若
1
2
<S<
3
2
,求
OF
FQ
的范围;
(Ⅱ)设|
OF
|=c(c≥2),S=
3
4
c.
若以O为中心,F为一个焦点的椭圆经过点Q,以c为变量,当|
OQ
|
取最小值时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△OFQ的面积为2
6
,且
OF
FQ
=m,?
(1)设
6
<m<4
6
,求向量
OF
FQ
的夹角θ的取值范围;?
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),|
OF
|=c,m=(
6
4
-1)c2,当|
OQ
|取最小值时,求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△OFQ的面积为2
6
,且
OF
FQ
=m

(1)设
6
<m<4
6
,求向量
OF
FQ
的夹角θ
正切值的取值范围;
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),|
OF
|=c,m=(
6
4
-1)c2
,当|
OQ
|
取得最小值时,求此双曲线的方程.
(3)设F1为(2)中所求双曲线的左焦点,若A、B分别为此双曲线渐近线l1、l2上的动点,且2|AB|=5|F1F|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•天津一模)已知△OFQ的面积为2
6
,且
OF
FQ
=m.
(1)设4
2
<m<4
6
,求向量
OF
FQ
夹角θ的取值范围;
(2)设以O为中心,F为焦点的双曲线经过点Q(如图),若|
OF
|=c,m=(
6
4
-1)c2
,当|
OQ
|取最小值时,求此双曲线的方程.

查看答案和解析>>

同步练习册答案