精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)上的单调区间

(2) 均恒成立求实数的取值范围.

【答案】(1)单调增区间是单调减区间是(2) .

【解析】试题分析:(1)根据,对求导,再令,再根据定义域,求得上是单调递减函数,由,即可求出上的单调区间;(2)通过时,化简不等式, 时,化简不等式,设,利用函数的导数,通过导函数的符号,判断单调性,推出时, 上单调递增, 符合题意; 时, 时,都出现矛盾结果;得到的集合.

试题解析:1时, ,设

时, ,则上是单调递减函数,即

上是单调递减函数,

时, 时,

∴在的单调增区间是,单调减区间是

2时, ,即

时, ,即

时,

上单调递增

时, 时,

符合题意;

时, 时,

上单调递减,

∴当时, ,与时, 矛盾;舍

时,设0中的最大值,当时,

上单调递减

∴当时, ,与时, 矛盾;舍

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数的极小值为,若恒成立,求满足条件的最小整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,一个焦点坐标是,离心率为.

(1)求椭圆的标准方程;

(2)过作直线交椭圆于两点, 是椭圆的另一个焦点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线处的切线方程;

(2)当,不等式恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数,设为自然对数的底数.

(1)当时,求的最大值;

(2)若在区间上的最大值为,求的值;

(3)设,若,对于任意的两个正实数,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1)求数列的通项公式;

(2)设数列的前项和为,且满足,试确定的值,使得数列为等差数列;

(3)将数列中的部分项按原来顺序构成新数列,且,求证:存在无数个满足条件的无穷等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 ,则下列说法正确的是( )

A. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设的交点为,当变化时, 的轨迹为曲线.

(1)写出的普遍方程及参数方程;

(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为 为曲线上的动点,求点的距离的最小值.

查看答案和解析>>

同步练习册答案