精英家教网 > 高中数学 > 题目详情
18.(1)一个袋中装有6个形状大小完全相同的球,球的编号分别为1,2,3,4,5,6,现从袋中随机取3个球,求取出的球的编号之和不大于10的概率;
(2)若实数a,b满足a2+b2≤1,求关于x的方程x2-2x+a+b=0有实数根的概率.

分析 (1)先由排列组合求出基本事件总数,再由列举法求出取出的球的编号之和不大于10包含的基本事件个数,由此能求出取出的球的编号之和不大于10的概率.
(2)由已知得点(a,b)在单位圆内,圆面积S=π,a+b≤1,由此利用几何概型能求出关于x的方程x2-2x+a+b=0有实数根的概率.

解答 解:(1)一个袋中装有6个形状大小完全相同的球,球的编号分别为1,2,3,4,5,6,现从袋中随机取3个球,
基本事件总数n=${C}_{6}^{3}$=20,
取出的球的编号之和不大于10包含的基本事件为(1,2,3),(1,2,4),(1,2,5),(1,2,6),(2,3,4),共5个,
∴取出的球的编号之和不大于10的概率p1=$\frac{m}{n}$=$\frac{5}{20}$=$\frac{1}{4}$.
(2)∵实数a,b满足a2+b2≤1,
∴点(a,b)在单位圆内,圆面积S=π,
∵关于x的方程x2-2x+a+b=0有实数根,
∴△=(-2)2-4(a+b)≥0,
即a+b≤1,表示图中阴影部分,
其面积S′=π-($\frac{1}{4}$π-$\frac{1}{2}×1×1$)=$\frac{3π}{4}$+$\frac{1}{2}$,
故所求概率P2=$\frac{{S}^{'}}{S}$=$\frac{3}{4}+\frac{1}{2π}$.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意列举法和几何概型在求解概率时的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图所示,M是△ABC的边AB的中点,若$\overrightarrow{CM}=\overrightarrow a,\overrightarrow{CA}$=$\overrightarrow b$,则$\overrightarrow{CB}$=(  )
A.$\overrightarrow a-2\overrightarrow b$B.$\overrightarrow a+2\overrightarrow b$C.$2\overrightarrow a-\overrightarrow b$D.$2\overrightarrow a+\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$、$\overrightarrow{b}$为平面向量,若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{π}{4}$,$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$=(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.$f(x)=\frac{{{3^{2x}}+1}}{{{3^{2x}}-1}}$.
(1)判断f(x)的奇偶性;
(2)判断并证明函数f(x)在(-∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以下命题:
①若x≠1或y≠2,则x+y≠3;
②若空间向量$\overrightarrow{OA}、\overrightarrow{OB}$与空间中任一向量都不能组成空间的一组基底,则$\overrightarrow{OA}$与$\overrightarrow{OB}$共线;
③若函数y=f(x)在x=x0处导数等于0,则该函数在该点处取得极值;
④若A、B为两个定点,K为正常数,若|PA|+|PB|=K,则动点P的轨迹是椭圆;
⑤已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切;
其中真命题为②⑤.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列关于互不相同的直线m,n,l和平面α,β的四个命题,其中正确命题的个数是(  )
(1)m?α,l∩α=A,点A∉m,则l与m不共面;
(2)l,m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
(3)若l∥α,m∥β,α∥β,则l∥m;
(4)若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β,
(5)若l⊥α,l⊥n,则n∥α
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.平面内,点P在以O为顶点的直角内部,A,B分别为两直角边上两点,已知$|{\overrightarrow{OP}}|=2$,$\overrightarrow{OP}•\overrightarrow{OA}=2$,$\overrightarrow{OP}•\overrightarrow{OB}=1$,则当|AB|最小时,sin∠AOP=(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2-x+2,则${∫}_{0}^{1}$f(x)dx=(  )
A.$\frac{13}{6}$B.$\frac{11}{6}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\frac{a+i}{b+2i}$=i(a,b∈R),其中i为虚数单位,则a+b=(  )
A.-1B.1C.2D.3

查看答案和解析>>

同步练习册答案