精英家教网 > 高中数学 > 题目详情
已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)-x2,则g(-1)=(  )
A、-4B、-3C、-1D、0
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:由题意和奇函数的性质求出f(-1)=-3,再将其代入g(-1)求值即可.
解答: 解:由题意知,y=f(x)+x2是奇函数,且f(1)=1,
所以f(1)+1=-[f(-1)+(-1)2],解得f(-1)=-3
所以g(-1)=f(-1)-1=-3-1=-4,
故选:A.
点评:本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=loga
1+x
1-x
(a>0且a≠1),
(1)判断f(x)的奇偶性;
(2)求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,-2),椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长为4,F是椭圆的右焦点,直线AF的一个方向向量为
d
=(
3
 , 2)
,O为坐标原点.
(1)求椭圆E的方程;
(2)设过点A的动直线l与椭圆E相交于P、Q两点,当△OPQ的面积S最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足条件
2x+y-1≥0
x-y≤0
y≤k
且z=x+y的最大值是10,则k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(n)≤f(0),则实数n的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的空间直角坐标系中,正方体ABCD-A1B1C1D1棱长为2,E为正方体的棱AA1的中点,F为棱AB上的一点,且∠C1EF=90°,则点F的坐标为(  )
A、(2,
1
2
,0)
B、(2,
1
3
,0)
C、(2,
1
4
,0)
D、(2,
2
3
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

在(1-x)(1+x)3的展开式中,x3的系数是(  )
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,1,0),
b
=(-1,0,2).
(Ⅰ)若向量k
a
+
b
与向量2
a
-
b
互相平行,求实数k的值;
(Ⅱ) 求由向量
a
和向量
b
所确定的平面的单位法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C对应的边分别为a,b,c.若a=1,A=30°,则“B=60°”是“b=
3
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案