精英家教网 > 高中数学 > 题目详情
如图,在等腰直角三角形ABD中,∠BAD=90°,且等腰直角三角形ABD与等边三角形CBD所在平面垂直,EBC的中点,则AE与平面BCD所成角的大小为________.
45°
BD的中点F,连接EFAF,易得AFBDAF⊥平面CBD,则∠AEF就是AE与平面BCD所成的角,由题意知EFCDBDAF,所以∠AEF=45°,即AE与平面BCD所成的角为45°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆锥母线长为6,底面圆半径长为4,点是母线的中点,是底面圆的直径,底面半径与母线所成的角的大小等于

(1)当时,求异面直线所成的角;
(2)当三棱锥的体积最大时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方体棱长为2,分别是的中点.

(1)证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且

(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三角形所在平面互相垂直,且,点,分别在线段上,沿直线向上翻折,使重合.

(Ⅰ)求证:
(Ⅱ)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;
(Ⅲ)求异面直线AB和PC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在二面角中,且 , , 则二面角的余弦值为________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD­A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为
A.B.C.D.

查看答案和解析>>

同步练习册答案