如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.
(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.
(1)由PC⊥平面ABC,得AB⊥PC.由点C在平面PBA内的射影D在直线PB上,
得到CD⊥平面PAB.进一步推出AB⊥平面PBC.
(2)异面直线AP与BC所成的角为60°.
(3)所求二面角的余弦值为.
解析试题分析:(1)∵PC⊥平面ABC,AB?平面ABC,
∴AB⊥PC.∵点C在平面PBA内的射影D在直线PB上,
∴CD⊥平面PAB.
又∵AB?平面PBA,∴AB⊥CD.
又∵CD∩PC=C,∴AB⊥平面PBC.
(2)∵PC⊥平面ABC,
∴∠PAC为直线PA与平面ABC所成的角.
于是∠PAC=45°,设AB=BC=1,则PC=AC=,以B为原点建立如图所示的空间直角坐标系,则B(0,0,0),A(0,1,0),C(1,0,0),P(1,0,),
=(1,-1,),=(1,0,0),
∵cos〈,〉==,∴异面直线AP与BC所成的角为60°.
(3)取AC的中点E,连接BE,则=(,,0),
∵AB=BC,∴BE⊥AC.又∵平面PCA⊥平面ABC,
∴BE⊥平面PAC.∴是平面PAC的法向量.设平面PAB的法向量为n=(x,y,z),则由得取z=1,得
∴n=(-,0,1).
于是cos〈n,〉===-.
又∵二面角C-PA-B为锐角,∴所求二面角的余弦值为.
考点:本题主要考查立体几何中的垂直关系、角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。注意运用转化与化归思想,将空间问题转化成平面问题。
科目:高中数学 来源: 题型:解答题
在正方体ABCD—A1B1C1D1中,E、F分别为棱BB1和DD1的中点.
(1)求证:平面B1FC//平面ADE;
(2)试在棱DC上取一点M,使平面ADE;
(3)设正方体的棱长为1,求四面体A1—FEA的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在斜三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.
(Ⅰ)求证:C1B⊥平面A1B1C1;
(Ⅱ)求A1B与平面ABC所成角的正切值;
(Ⅲ)若E为CC1中点,求二面角A—EB1—A1的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC—中,底面为正三角形,平面ABC,=2AB,N是的中点,M是线段上的动点。
(1)当M在什么位置时,,请给出证明;
(2)若直线MN与平面ABN所成角的大小为,求的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, BD=,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com