【题目】设向量 =(sin x,cos x), =(sin x, sin x),x∈R,函数f(x)= ,求:
(1)f(x)的最小正周期;
(2)f(x)在区间[0,1]上的最大值和最小值,以及取得最大值和最小值时x的值.
【答案】
(1)解:∵ =(sin x,cos x), =(sin x, sin x),x∈R,
∴f(x)=
=(sin x,cos x)(3sin x,cos x+2 sin x)
=3sin2 x+(cos x+2 sin x)cos x
= sinπx﹣cosπx+2
=2sin(πx﹣ )+2,
∴f(x)的最小正周期为T= =2
(2)解:∵x∈[0,1],∴πx﹣ ∈[﹣ , ],
∴sin(πx﹣ )∈[﹣ ,1];
当πx﹣ =﹣ ,即x=0时,f(x)取得最小值为2×(﹣ )+2=1,
当πx﹣ = ,即x= 时,f(x)取得最大值为2×1+2=4
【解析】(1)由平面向量的数量积运算,利用三角函数的恒等变换化简f(x),即可求出f(x)的最小正周期;(2)根据x∈[0,1],利用正弦函数的图象与性质,即可求出f(x)的最值以及对应的x的取值.
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD的边长为2,△BCD为正三角形,现将△BCD沿BD向上折起,折起后的点C记为C′,且CC′= ,连接CC′,E为CC′的中点.
文科:
(1)求证:AC′∥平面BDE;
(2)求证:CC′⊥平面BDE;
(3)求三棱锥C′﹣BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(, ),(),且在点处的切线方程为.
(Ⅰ)求, 的值;
(Ⅱ)若函数在区间内有且仅有一个极值点,求的取值范围;
(Ⅲ)设()为两曲线(),的交点,且两曲线在交点处的切线分别为, .若取,试判断当直线, 与轴围成等腰三角形时值的个数并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如图所示的程序框图
(1)当输入的x为2,﹣1时,分别计算输出的y值,并写出输出值y关于输入值x的函数关系式;
(2)当输出的结果为4时,求输入的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了增强市民的环境保护组织,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织,现按年龄把该组织的成员分成5组:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的频率分布直方图如图所示,已知该组织的成员年龄在[35,40)内有20人
(1)求该组织的人数;
(2)若从该组织年龄在[20,25),[25,30),[30,35)内的成员中用分层抽样的方法共抽取14名志愿者参加某社区的宣传活动,问应各抽取多少名志愿者?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,正确的有( ) ①两个变量间的相关系数r越小,说明两变量间的线性相关程度越低;
②命题“x∈R,使得x2+x+1<0”的否定是:“对x∈R,均有x2+x+1>0”;
③命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;
④若函数f(x)=x3+3ax2+bx+a2在x=﹣1有极值0,则a=2,b=9或a=1,b=3.
A.0 个
B.1 个
C.2 个
D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为 ,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;
(Ⅱ)求该射手的总得分X的分布列及数学期望EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 并且满足2Sn=an2+n,an>0(n∈N*).
(1)求a1 , a2 , a3;
(2)猜想{an}的通项公式,并加以证明;
(3)设x>0,y>0,且x+y=1,证明: ≤ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com