精英家教网 > 高中数学 > 题目详情

【题目】已知函数若函数恰有个不同的零点,则实数的取值范围是__________

【答案】(3/22)

【解析】g(x)=

显然,当a=2时,g(x)有无穷多个零点,不符合题意;

x≥a时,令g(x)=0x=0,

x<a时,令g(x)=0x=0x2=

(1)若a>0a≠2,则g(x)在[a,+∞)上无零点,在(﹣∞,a)上存在零点x=0x=-≥a,解得0<a<2,

(2)若a=0,则g(x)在[0,+∞)上存在零点x=0,在(﹣∞,0)上存在零点x=﹣

符合题意;

(3)若a<0,则g(x)在[a,+∞)上存在零点x=0,

g(x)在(﹣∞,a)上只有1个零点,0(﹣∞,a),g(x)在(﹣∞,a)上的零点为x=﹣

<a,解得﹣<a<0.

综上,a的取值范围是(,2).

故答案为(,2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且在轴上截得弦的长为4。

(1)求动圆圆心的轨迹的方程;

(2)设,过点斜率为的直线交轨迹两点, 的延长线交轨迹两点。

①若的面积为3,求的值。

②记直线的斜率为,证明: 为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,直线过点与抛物线交于 两点.点关于轴的对称点为,连接.

(1)求抛物线线的标准方程;

(2)问直线是否过定点?若是,求出定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了贯彻落实中央省市关于新型冠状病毒肺炎疫情防控工作要求,积极应对新型冠状病毒疫情,切实做好2020年春季开学工作,保障校园安全稳定,普及防控知识,确保师生生命安全和身体健康.某校开学前,组织高三年级800名学生参加了“疫情防控”网络知识竞赛(满分150分).已知这800名学生的成绩均不低于90分,将这800名学生的成绩分组如下:第一组,第二组,第三组,第四组,第五组,第六组,得到的频率分布直方图如图所示.

1)求的值并估计这800名学生的平均成绩(同一组中的数据用该组区间的中点值代表);

2)该校“群防群控”督查组为更好地督促高三学生的“个人防控”,准备从这800名学生中取2名学生参与督查工作,其取办法是:先在第二组第五组第六组中用分层抽样的方法抽取6名学生,再从这6名学生中随机抽取2名学生.记这2名学生的竞赛成绩分别为.求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,直线的参数方程为: 为参数)

(1)求圆和直线的极坐标方程;

(2)点 的极坐标为,直线与圆相较于,求的值.

查看答案和解析>>

同步练习册答案