【题目】如图,已知矩形所在平面垂直于直角梯形所在平面于直线,且, 且∥.
(Ⅰ)设点为棱中点,求证: 平面;
(Ⅱ)线段上是否存在一点,使得直线与平面所成角的正弦值等于?若存在,试确定点的位置;若不存在,请说明理由.
【答案】(Ⅰ)证明见解析;(Ⅱ)当点与点重合时,直线与平面所成角的正弦值为,理由见解析.
【解析】试题分析:(1)由平面平面,及为矩形可知,所以平面,可以为原点,为坐标轴建立空间直角坐标系,从而利用向量得到,平面的方向向量,通过证明平面;(2)可求得平面的方向向量, 与平面的夹角和与的夹角互余,通过向量的运算即可求得坐标.
试题解析:(1)证明:由已知,平面平面,且,则平面,所以两两垂直,故以为原点, 分别为轴轴, 轴正方向,建立如图所示的空间直角坐标系 .
则,所以.
易知平面的一个法向量等于,所以,所以,
又平面,所以平面.
(2)当点与点重合时,直线与平面所成角的正弦值为.
理由如下:
因为,设平面的法向量为,
由,得,
即,得平面的一个法向量等于,
假设线段上存在一点,使得直线与平面所成的角的正弦值等于.
设,
则.
所以
.
所以,解得或 (舍去)
因此,线段上存在一点,当点与点重合时,直线与平面所成角的正弦值等于.
科目:高中数学 来源: 题型:
【题目】如下图,已知点是离心率为的椭圆: 上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合.
(1)求椭圆的方程;
(2)求证:直线, 的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x(1-)是R上的偶函数.
(1)对任意的x∈[1,2],不等式m·≥2x+1恒成立,求实数m的取值范围.
(2)令g(x)=1-,设函数F(x)=g(4x-n)-g(2x+1-3)有零点,求实数n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD,四边形ABEF是矩形,将矩形ABEF沿AB折起到四边形ABE1F1的位置,使平面ABE1F1⊥平面ABCD,M为AF1的中点,如图2.
(1)求证:BE1⊥DC;
(2)求证:DM∥平面BCE1;
(3)判断直线CD与ME1的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD-A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′分别交于M,N两点,设BM=x,x∈[0,1],给出以下四个结论:
①平面MENF⊥平面BDD′B′;
②直线AC∥平面MENF始终成立;
③四边形MENF周长L=f(x),x∈[0,1]是单调函数;
④四棱锥C′-MENF的体积V=h(x)为常数;
以上结论正确的是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校从参加安全知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数,成绩分记为优秀)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试的平均分;
(3)为参加市里举办的安全知识竞赛,学校举办预选赛.已知在学校安全知识竞赛中优秀的同学通过预选赛的概率为,现在从学校安全知识竞赛中优秀的同学中选3人参加预选赛,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,已知直线的参数方程为 (为参数),曲线的极坐标方程是.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)设直线与曲线相交于两点,点为的中点,点的极坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱中,底面为等腰直角三角形, , , 若、、别是棱、、的中点,则下列四个命题:
;
②三棱锥的外接球的表面积为;
③三棱锥的体积为;
④直线与平面所成角为
其中正确的命题有__________.(把所有正确命题的序号填在答题卡上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com