精英家教网 > 高中数学 > 题目详情

【题目】某公司为提高市场销售业绩,设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对采取促销没有采取促销的营销网点各选了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为精英店”.

采用促销的销售网点

不采用促销的销售网点

1)请根据题中信息填充下面的列联表,并判断是否有的把握认为精英店与采促销活动有关

采用促销

无促销

合计

精英店

非精英店

合计

50

50

100

2)某精英店为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)()的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的

45.8

395.5

2413.5

4.6

21.6

①根据上表数据计算的值;

②已知该公司产品的成本为10/件,促销费用平均5/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.

附①:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附②:对应一组数据

其回归直线的斜率和截距的最小二乘法估计分别为.

【答案】1)有的把握认为精英店与促销活动有关 2)①.

②当售价元时,日利润达到最大为.

【解析】

(1)根据图表补全列联表,再计算判断即可.

(2)根据线性回归方程的方法求解函数表达式,再求导分析单调性与最值即可.

1

采用促销

无促销

合计

精英店

35

20

55

非精英店

15

30

45

合计

50

50

100

因为

的把握认为精英店与促销活动有关”.

2)①由公式可得:

所以回归方程为.

②若售价为,单件利润为,日销售为

故日利润

时,单调递增;

时,单调递减.

故当售价元时,日利润达到最大为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是圆柱体的一条母线,过底面圆的圆心是圆上不与重合的任意一点,已知棱.

1)求异面直线与平面所成角的大小;

2)将四面体绕母线旋转一周,求三边旋转过程中所围成的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于正方形垂直于平面.且

(1)求三棱锥的体积;

(2)求证:面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,如果存在实数,且不同时成立),使得恒成立,则称函数映像函数”.

1)判断函数是否是映像函数,如果是,请求出相应的的值,若不是,请说明理由;

2)已知函数是定义在上的映像函数,且当时,.求函数)的反函数;

3)在(2)的条件下,试构造一个数列,使得当时,,并求时,函数的解析式,及的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(本题满分15分)已知m1,直线

椭圆分别为椭圆的左、右焦点.

)当直线过右焦点时,求直线的方程;

)设直线与椭圆交于两点,

的重心分别为.若原点在以线段

为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半圆的直径的两端点为,点在半圆及直径上运动,若将点的纵坐标伸长到原来的2倍(横坐标不变)得到点,记点的轨迹为曲线.

(1)求曲线的方程;

(2)若称封闭曲线上任意两点距离的最大值为该曲线的直径,求曲线直径”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1S2.

(1) 若小路一端EAC的中点,求此时小路的长度;

(2) 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,给定个整点,其中.

(Ⅰ)当,从上面的个整点中任取两个不同的整点,求的所有可能值;

(Ⅱ)从上面个整点中任取个不同的整点,.

i)证明:存在互不相同的四个整点,满足,

ii)证明:存在互不相同的四个整点,满足,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若时,讨论的单调性;

2)设,若有两个零点,求的取值范围

查看答案和解析>>

同步练习册答案